
Joint Proceedings of HOR 2019 and IWC 2019

(with system descriptions from CoCo 2019)



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

HOR 2019 5
Martin Avanzini, Ugo Dal Lago, Georg Moser: Higher-Order Com-

plexity Analysis with First-Order Tools . . . . . . . . . . . . . . 6
Jörg Endrullis: Degrees of extensionality in the theory of Böhm trees . 11
Giulio Manzonetto: Degrees of Extensionality in the theory of Böhm
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Preface

This report contains the joint proceedings of the 10th Workshop on Higher-
Order Rewriting (HOR) and 7th International Workshop on Confluence (IWC),
held in Dortmund, Germany on June 28th, 2019. In addition, the proceedings
include the system descriptions of the 8th Confluence Competition (CoCo 2019).
The workshops were part of the International Conference on Formal Structures
for Computation and Deduction (FSCD 2019).

HOR is a forum to present work concerning all aspects of higher-order rewrit-
ing. The aim is to provide an informal and friendly setting to discuss recent
work and work in progress concerning higher-order rewriting, broadly construed.
This includes various topics of interest that range from foundations (pattern
matching, unification, strategies, narrowing, termination, syntactic properties,
type theory), frameworks (term rewriting, conditional rewriting, graph rewrit-
ing, net rewriting), semantics (operational semantics, denotational semantics,
separability, higher-order abstract syntax) to implementation (graphs, nets, ab-
stract machines, explicit substitution, rewriting tools, compilation techniques)
and application (proof checking, theorem proving, generic programming, declar-
ative programming, program transformation, certification).

Confluence provides a general notion of determinism and has been conceived
as one of the central properties of rewriting. Confluence relates to the many
topics of rewriting (completion, termination, commutation, coherence, etc.) and
has been investigated in many formalisms of rewriting such as first-order rewrit-
ing, lambda-calculi, higher-order rewriting, higher-dimensional rewriting, con-
strained rewriting, conditional rewriting, etc. Recently, there is a renewed in-
terest in confluence research, resulting in new techniques, tool support, certi-
fication, as well as applications. IWC promotes and stimulates research and
collaboration on confluence and related properties.

The joint program contains 5 contributed talks as well as invited talks by
Martin Avanzini, Fransico Duran, Jörg Endrullis, Cynthia Kop, and Giulio
Manzonetto. In addition, the program contains the system descriptions from
the 8th Confluence Competition (CoCo 2019) held in conjunction with the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2019).

Many people contributed to the preparations of HOR and IWC. Hard work
by the program commitees, steering committees, and subreviewers made an
exciting program of contributed and invited talks possible. In addition, we are
greatful to the organizing committee and workshop chairs of FSCD for hosting
the workshops in Dortmund.

June 14, 2019 Brasilia/Novi Sad/Copenhagen
Mauricio Ayala-Rincón
Silvia Ghilezan
Jakob Grue Simonsen
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Higher-Order Complexity Analysis With First-Order Tools

Martin Avanzini1, Ugo Dal Lago12, and Georg Moser3 ∗

1 INRIA Sophia Antipolis, France
2 Università di Bologna, Italy

3 University of Innsbruck, Austria

1 Introduction

Automatically checking programs for correctness has attracted the attention of the computer
science research community since the birth of the discipline. Properties of interest are not
necessarily functional, however, and among the non-functional ones, noticeable cases are bounds
on the amount of resources (like time, memory and power) programs need when executed.

Deriving upper bounds on the resource consumption of programs is indeed of paramount
importance in many cases, but becomes undecidable as soon as the underlying programming
language is non-trivial. If the units of measurement become concrete and close to the physical
ones, the problem gets even more complicated, given the many transformation and optimisation
layers programs are applied to before being executed. A typical example is the one of WCET
techniques adopted in real-time systems [22], which do not only need to deal with how many
machine instructions a program corresponds to, but also with how much time each instruction
costs when executed by possibly complex architectures (including caches, pipelining, etc.), a
task which is becoming even harder with the current trend towards multicore architectures.

As an alternative, one can analyse the abstract complexity of programs. For instance, one
can take the number of instructions executed by the program or the number of evaluation steps
to normal form, as a measure of its execution time. This is a less informative metric, which
however becomes accurate if the actual time complexity of each instruction is kept low. One
advantage of this analysis is the independence from the specific hardware platform executing the
program at hand: the latter only needs to be analysed once. This is indeed a path which many
have followed in the programming language community. A variety of verification techniques
have been employed in this context, like abstract interpretations, model checking, type systems,
program logics, or interactive theorem provers; see [1, 13, 21] for some pointers. If we restrict our
attention to higher-order functional programs, however, the literature becomes much sparser.

The rewriting-community has recently developed several tools for the automated time
complexity analysis of term rewrite system, a formal model of computation that is at the heart
of functional programming. Examples are AProVE [7], and TCT [3]. These first-order provers
(FOPs for short) combine many different techniques, and after some years of development,
start being able to treat non-trivial programs, as demonstrated by the result of the annual
termination competition.1 Such tools are potentially very interesting also for the complexity
analysis of higher-order functional programs, since well-known transformation techniques such
as defunctionalisation [20] are available, which turn higher-order functional programs into
equivalent first-order ones. This has been done in the realm of termination [18, 8], but appears
to be infeasible in the context of complexity analysis. Conclusively this program transformation
approach has been reflected critically in the literature, cf. [13].

∗This work was partially supported by FWF project number J3563, FWF project number P25781 and by
French ANR project Elica ANR-14-CE25-0005.

1http://termination-portal.org/wiki/Termination_Competition.
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Higher-Order Complexity Analysis With First-Order Tools M. Avanzini, U. Dal Lago, and G. Moser

A natural question, then, is whether time complexity analysis of higher-order programs can
indeed be performed by going through first-order tools. Is it possible to evaluate the unitary
cost of functional programs by translating them into first-order programs, analysing them by
existing first-order tools, and thus obtaining meaningful and informative results? Is, e.g., plain
defunctionalisation enough? As it turns out, defunctionalisation is indeed not enough, primarily,
because the resulting system lacks sufficient structure to be analysed automatically by current
FOPs. However, the situation can be rectified by post-processing the defunctionalised program.

In the following, we give an informal account on how FOPs can be leveraged to reason about
the runtime complexity of higher-order programs. Also, we briefly report on a tool, duped
HoCA, implementing the discussed procedures.2 More details and formal definitions can be
found in the corresponding paper [2].

2 On Defunctionalisation: Ruling the Chaos

The main idea behind defunctionalisation is conceptually simple: function-abstractions are
represented as first-order values; calls to abstractions are replaced by calls to a globally defined
apply-function. Consider for instance the following OCaml-program:

1 let comp f g = fun z → f (g z);;
2 let rec walk xs =
3 match xs with

4 [] → (fun z → z)
5 | x :: ys → comp (walk ys) (fun z → x::z);;
6 let rev l = walk l [];;

7 let main l = rev l;;

Run on a list of n elements, walk first constructs a function which reverses its first argument
and appends it to the second argument. This function, which can be easily defined by recursion,
is fed in rev with the empty list. The function main only serves the purpose of indicating the
complexity of which function we are interested at.

Defunctionalisation can be understood already at this level. We first define a datatype for
representing the three abstractions occurring in the program:

1 type ’a cl = C1 of ’a cl ∗ ’a cl (∗ fun z → f (g z) ∗)
2 | C2 (∗ fun z → z ∗)
3 | C3 of ’a (∗ fun z → x::z ∗)

More precisely, an expression of type ’a cl represents a function closure, whose arguments are
used to store assignments to free variables. An infix operator (@), modelling application, can
then be defined that evaluates these closures.3 Overall, we arrive at a first-order version of the
original higher-order function:

1 let rec (@) c z = let rec walk xs =
2 match c with match xs with

3 C1(f,g) → f @ (g @ z) [] → C2

4 | C2 → z | x::ys → comp (walk ys) C3(x);;
5 | C3(x) → x::z;; let rev l = walk l @ [];;

6 let comp f g = C1(f,g);; let main l = rev l;;

2Our tool HoCA is open source and available under http://cbr.uibk.ac.at/tools/hoca/.
3The definition of (@) is rejected by the OCaml type-checker, which however, is not an issue in our context.

2
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Observe that now the recursive function walk constructs an explicit representation of the closure
computed by its original definition. The function (@) carries out the remaining evaluation. This
program can now already be understood as a first-order rewrite system.

Of course, a systematic construction of the defunctionalised program requires some care. For
instance, one has to deal with closures that originate from partial function applications. Still, the
construction is quite easy to mechanize. On our running example, this program transformation
results in the rewrite system Arev, which looks as follows:

(1) main(l)→ Rev @ l (2) Rev @ l→ Fixw @ l @ []

(3) Fixw @ xs→ Walk @ xs (4) Walk @ xs→ matchw(xs)

(5) matchw([])→ C2 (6) matchw(x::ys)→ Comp @ (Fixw @ ys) @ C3(x)

(7) Comp @ f → Comp1(f) (8) Comp1(f) @ g → C1(f, g)

(9) C1(f, g) @ z → f @ (g @ z) (10) C2 @ z → z

(11) C3(x) @ z → x::z .

Despite its conceptual simplicity, current FOPs are unable to effectively analyse applicative
rewrite systems, such as the one above. The reason this happens lies in the way FOPs work,
which itself reflects the state of the art on formal methods for complexity analysis of first-
order rewrite systems. In order to achieve composability of the analysis, the given system is
typically split into smaller parts (see for example [4]), and each of them is analysed separately.
Furthermore, contextualisation (aka path analysis [11]) and a suitable form of flow graph analysis
(or dependency pair analysis [10, 16]) is performed. However, at the end of the day, syntactic and
semantic basic techniques, like path orders or interpretations are employed. All these methods
focus on the analysis of the given defined symbols (like for instance the application symbol in
the example above) and fail if their recursive definition is too complicated. Naturally this calls
for a special treatment of the applicative structure of the system [9].

How could we get rid of those (@), thus highlighting the deep recursive structure of the
program above? Let us, for example, focus on the rewriting rule C1(f, g) @ z → f @ (g @ z),
which is particularly nasty for FOPs, given that the variables f and g will be substituted by
unknown closure terms, which could potentially be the cause of a very high complexity. How
could we simplify all this? The key observation is that although this rule tells us how to compose
two arbitrary closures, only very few instances of the rule above are needed, namely those were
g is of the form C3(x), and f is either C2 or of the form C1(f, g). This crucial information can
be retrieved in the so-called collecting semantics [15] of the term rewrite system above, which
precisely tells us which objects will possibly be substituted for rule variables along the evaluation
of certain families of terms. Dealing with all this fully automatically is of course impossible, but
techniques based on tree automata, and inspired by those in [12] can indeed be of help.

Another useful observation is the following: functions like, e.g., Comp or matchw are essentially
useless: their only purpose is to build intermediate closures, or to control program flow: one
could simply shortcircuit them, using a form of inlining. After this is done, some of those rules
are dead code, and can thus be eliminated from the program. At the end of the day, we arrive at
a truly first-order system and uncurrying brings it to a format most suitable for FOPs.

If we carefully apply the just described ideas to the example above, we end up with the
following first-order system, called Rrev, which is precisely what HoCA produces in output:

3
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Table 1: Experimental Evaluation conducted with TCT and TTT2 on 25 relevant examples.

Execution Time (min / avg / max)

Inferred Runtime transformation #yes HoCA FOP

constant defunctionalisation 2 — 0.37 / 1.71 / 3.05
+ simplification 2 0.01 / 2.28 / 4.56 0.23 / 0.51 / 0.79

linear defunctionalisation 5 — 0.37 / 4.82 / 13.85
+ simplification 14 0.01 / 0.54 / 4.56 0.23 / 2.53 / 14.00

quadratic defunctionalisation 5 — 0.37 / 4.82 / 13.85
+ simplification 18 0.01 / 0.43 / 4.56 0.23 / 6.30 / 30.12

polynomial defunctionalisation 5 — 0.37 / 4.82 / 13.85
+ simplification 20 0.01 / 0.42 / 4.56 0.23 / 10.94 / 60.10

terminating defunctionalisation 8 — 0.83 / 1.38 / 1.87
+ simplification 25 0.01 / 0.87 / 6.48 0.72 / 1.43 / 3.43

(12) main(l)→ [] (13) main(x::ys)→ C11(fix1w(ys), C3(x), [])

(14) fix1w([])→ C2 (15) fix1w(x::ys)→ C1(fix1w(ys), C3(x))

(16) C11(C2, C3(x), z)→ x::z (17) C11(C1(f, g), C3(x), z)→ C11(f, g, x::z) .

This term rewrite system is equivalent to Arev from above, both extensionally and in terms
of the underlying complexity up to speedup by a constant factor. However, the FOPs we have
considered can indeed conclude that main has linear complexity, a result that can then be lifted
back to the original program.

3 Experimental Evaluation

We compiled a diverse collection of higher-order programs from the literature [6, 13, 17] and
standard textbooks [5, 19], on which we performed tests with our tool in conjunction with the
general-purpose first-order resource analysis tool TCT [3], version 2.1. For comparison, we have
also paired HoCA with the termination tool TTT2 [14], version 1.15.

In Table 1 we summarise our experimental findings on the 25 examples from our collection.4

Rows + simplification in the table indicates the total number of higher-order programs whose
runtime could be classified linear, quadratic and at most polynomial when HoCA is paired
with the back-end TCT, and those programs that can be shown terminating when HoCA is
paired with TTT2. In contrast, row defunctionalisation shows the same statistics when the FOP
is run directly on the defunctionalised program. To each of those results, we state the minimum,
average and maximum execution time of HoCA and the employed FOP. All experiments were
conducted on a machine with an 8 dual-core AMD Opteron™ 885 processors running at 2.60GHz,
and 64Gb of RAM.5 Furthermore, the tools were advised to search for a certificate within 60
seconds. Not all examples in the testbed are subject to a runtime complexity analysis through
our approach. However, at least termination can be automatically verified. For all but one
example (namely mapplus.fp) the obtained complexity certificate is asymptotically optimal.

4Examples and full experimental evidence can be found on the HoCA homepage.
5Average PassMark CPU Mark 2851; http://www.cpubenchmark.net/.
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Abstract

We will discuss the clocked lambda-calculus, an extension of the classical lambda-calculus.
This extension is infinitary strongly normalizing, infinitary confluent, and the unique infinitary
normal forms constitute enriched Böhm Trees, which we call clocked Böhm Trees. These are
suitable for discriminating a rich class of lambda-terms having the same Böhm Trees.
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Abstract

The problem of determining when two programs are equivalent is central in computer science,
e.g., it is necessary to verify that the optimizations performed by a compiler actually preserve
the meaning of the input program. For λ-calculi, Morris proposed in his thesis [5] to consider
two λ-terms M and N as equivalent when they are contextually equivalent with respect to some
fixed set O of observables. Let us call TO the observational theory with observables O:

TO `M = N ⇐⇒ ∀C[] . [ C[M ] ∈ O ⇐⇒ C[N ] ∈ O ]

The problem of this definition is that the quantification over all possible contexts is difficult
to handle in practice. Therefore, many researchers over the years undertook a quest for char-
acterizing observational equivalences both semantically, by defining fully abstract denotational
models, and syntactically, by introducing several kinds of extensional equivalences on Böhm
trees (that are possibly infinite trees representing program executions).

The observational theory H∗ := TSOL where the observables are the solvable (equivalently,
head-normalizable) λ-terms is by far the most well studied theory of λ-calculus — it is the
theory of Scott’s D∞ model [6] and equates two λ-terms exactly when their Böhm trees are
equal up to possibly infinite η-expansions. Curiously, the first extensional observational theory
that has been defined in the literature is not H∗, but rather H+ := TNF where the observables
are the β-normalizable λ-terms. This theory has been little studied in the literature, but a
fully abstract filter model has been defined by Coppo et al. in [3] and it is well-known that two
λ-terms are equal in H+ whenever their Böhm trees coincide up to finite η-expansions.

It should now be clear that observational theories and extensional equivalences are tightly
connected. Now, the λ-calculus admits a notion of extensionality a priori stronger than η:

(ω-rule) ∀ closed λ-term P .MP = NP =⇒ M = N

λ

λη H

Hη

Hω Bη

λω B

Bω

? • H+

H∗

so, it is natural to wonder how this rule compares with the notions of
extensionality above. It is well-known that neither λ (the theory of
β-equivalence), H (the least theory equating all unsolvables), B (the
theory of Böhm trees) nor their extensional versions λη, Hη and Bη
do satisfy the (ω)-rule. Given a theory T it is however possible to
define T ω as the least theory satisfying the ω-rule.
In Barendregt’s book [1] a “kite” shaped diagram depicts all strict
inclusion relations among these theories (see the figure on the right,
where T1 is above T2 whenever T1 ( T2). In the seventies Barendregt
raised the question of determining the position of H+ in this diagram,
and in 1978 Sallé conjectured that Bω ( H+. The problem remained
open for almost 40 years. In 2016 Breuvart et al. proved that Bω ⊆
H+ [2]. Sallé’s conjecture has been refuted by Intrigila et al. in 2017
by showing that Bω and H+ actually coincide [4]. As a byproduct,
we obtain a characterization of all degrees of extensionality in B.
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conjecture. In Dale Miller, editor, 2nd International Conference on Formal Structures for Compu-
tation and Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK, volume 84 of LIPIcs, pages
20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[5] J.H. Morris. Lambda calculus models of programming languages. Phd thesis, MIT, 1968.

[6] Dana S. Scott. Continuous lattices. In Lawvere, editor, Toposes, Algebraic Geometry and Logic,
volume 274 of Lecture Notes in Mathematics, pages 97–136. Springer, 1972.

2
13



SizeChangeTool: A Termination Checker for
Rewriting Dependent Types

Guillaume Genestier12

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay
2 MINES ParisTech, PSL University

1 Introduction

SizeChangeTool [10] is a fully automated termination checker for the λΠ-calculus modulo
rewriting. Its development became essential as various libraries were encoded in an implemen-
tation of this logic: the logical framework Dedukti [3].

A logical framework allows the user to define the logic they want to reason with and then
use it to actually write proofs. To define a logic in Dedukti, the user provides a set of rewriting
rules. Those rules do not only define functions, but can also define types. However, to ensure
that the defined type system has good properties, like logical consistency or decidability, the
rules must satisfy some properties: termination, confluence and type preservation.

Many criteria have been created to check termination of first-order rewriting. For instance,
dependency pairs [2], which evolved in a complete framework [21] or size-change termination
[18], just to mention those appearing in this work. The dynamism of this research area is
illustrated by the numerous tools participating in the various first-order categories of the ter-
mination competition [20]. For higher-order rewriting too, criteria have been crafted, many of
them can be found in [15] and a category exists in the competition. However, one can deplore
the small number of participants in this category: Only 2 in 2019, including SizeChangeTool!

This lack of implementations is even more visible for rewriting with dependent types, for
which criteria have been developed [5, 14], but as far as the author knows, none of them have
been implemented.
Outline After presenting the logical system and examples of programs in Sec. 2, we present the
criterion used by the tool in Sec. 3. Sec. 4 details the implementation choices of SizeChange-
Tool and Sec. 5 compares it with the others termination checkers.

2 The λΠ-calculus Modulo Rewriting

The λΠ-calculus modulo rewriting (λΠ/R for short) is an extension of the logical framework
LF [12]. It is a system of dependent types where types are identified not only modulo the
β-conversion of λ-calculus, but also by user-given rewriting rules.

Definition 1. λΠ/R extends the Pure Type System λP [4] with a finite signature F and a set
of rules R = (∆, f l̄ → r) such that f ∈ F, FV(r) ⊆ FV(l̄) and ∆ is a context associating a
type to every variable of l̄. →R is the closure by substitution and context of R.

The conversion rule is enriched to take into account rewriting rules:

Γ ` t : A Γ ` B : s A↔∗βR B
(conv)

Γ ` t : B
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Note that the constraints on the rewriting rules are very loose. In particular, we do not
enforce the rules to be orthogonal, meaning that overlapping or non-linear rules are allowed. Let
us give two examples, highlighting the possibilities offered by the system. A more comprehensive
example can be found in [7].

Example 2 (Summation of variable arity). Rewriting rules at type level allow us for instance
to define F n as the type Nat ⇒ Nat ⇒...⇒ Nat with n arrows. With it, we can type the
function sum which is such that sum n l1...ln = l1 +...+ ln

1.

symbol Nat : TYPE
symbol const 0 : Nat symbol const s : Nat ⇒ Nat

symbol plus : Nat ⇒ Nat ⇒ Nat set infix "+" := plus
rule 0 + &y → &y rule (s &x) + &y → s (&x + &y)

symbol F : Nat ⇒ TYPE
rule F 0 → Nat rule F (s &n) → Nat ⇒ F &n

symbol sum : ∀ n: Nat , F n
rule sum 0 → 0 rule sum (s 0) → λx, x
rule sum (s (s &n)) → λx y, sum (s &n) (x + y)

Example 3 (Simply-typed λ-calculus). A simple instance of encoding of logic in Dedukti is
the simply-typed λ-calculus, which is presented here with the type typ for code of types and T
which decodes an element of typ into a type of Dedukti.

symbol typ : TYPE symbol arrow : typ ⇒ typ ⇒ typ
symbol T : typ ⇒ TYPE

symbol lambda : ∀(a b : typ), (T a ⇒ T b) ⇒ T (arrow a b)
symbol appli : ∀(a b : typ), T (arrow a b) ⇒ T a ⇒ T b

rule appli &a &b (lambda _ _ &f) &x → &f &x

We are interested in the strong normalization of →βR= (→β ∪ →R).

3 Dependency Pairs and Size-Change Termination
Dependency pairs are at the core of all the state-of-the-art automated termination provers
for first-order term rewriting systems. Arts and Giesl [2] proved that a first-order rewriting
relation is terminating if and only if there is no infinite chain, that is sequence of dependency
pairs interleaved with reductions in the arguments. This notion of dependency pair has been
extended to higher order [6, 9], however those extensions do not include dependent types, which
is a compulsory feature when we are developing a logical framework.

Definition 4 (Dependency pairs). Let f l̄ > g m̄ iff there is a rule f l̄ → r ∈ R, g is the head
of the left-hand side of a rule and g m̄ is a subterm of r maximally applied.

f t1 . . . tp >̃ g u1 . . . uq iff there are a dependency pair f l1 . . . li > gm1 . . .mj with i 6 p and
j 6 q and a substitution σ such that, for all k 6 i, tk →∗βR lkσ and, for all k 6 j, mkσ = uk.

1& is used in Dedukti to identify pattern variables in rewriting rules.

2
15



SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

One criterion for first-order rewriting is Lee, Jones and Ben-Amram size-change termination
criterion (SCT) [18]. It consists in following the arguments through sequences of recursive calls
and checking that, in every potential loop, one of them strictly decreases.

Definition 5 (Size-Change Termination). Let � be a well-founded order on terms. The call
graph G(R,�) associated to R is the directed labeled graph on the symbols of F such that there
is an edge between f and g iff there is a dependency pair f l1 . . . lp > gm1 . . .mq. This edge is
labeled with the matrix (ai,j)i≤ar(f),j≤ar(g) where:

• if li �mj, then ai,j = −1; • if li = mj, then ai,j = 0;
• otherwise ai,j =∞ (in particular if i > p or j > q).
R is size-change terminating for � if, in the transitive closure of G(R,�) (using the min-

plus semi-ring to multiply the matrices labeling the edges), all idempotent matrices labeling a
loop have some −1 on their diagonal.

In [7], we present an adaptation of dependency pairs to λΠ/R and prove that (under some
conditions) the absence of infinite chains implies the termination of→βR. After Wahlstedt [22],
we used an adaptation of SCT to check the absence of infinite chains of dependency pairs.

Definition 6 (Well-Structured System). We consider a pre-order � on F such that if g occurs
in the type of f or in the right-hand side of a rewriting rule defining f , then f � g. R is
well-structured if for every rule (∆, f l̄ → r), if f is of type Π(x̄ : T̄ ).U , then ∆ ` r : U [x̄ → l̄]
is derivable using only symbols smaller or equal to f .

The result of [7] is:

Theorem 7. The relation →βR terminates on terms typable in λΠ/R if →βR is locally conflu-
ent and preserves typing, R is well-structured, size-change terminating for the subterm ordering
and plain-function passing.

where “plain-function passing” is a quite restrictive condition on the variable allowed to
occur in the right-hand side of rules.

In SizeChangeTool, the criterion used is a (still unpublished) extension of this result
where we replace the plain-function passing hypothesis by a condition analogous to strict posi-
tivity of inductive types and use the structural ordering introduced in [8] for checking size-change
termination.

Extension 8. The relation →βR terminates on terms typable in λΠ/R if →βR is locally
confluent and preserves typing, R is well-structured, is size-change terminating for the structural
ordering and there is a pre-order between types such that for every rule (∆, f l̄ → r) and every
c ∈ F occurring in a li, the type of c is strictly positive for this pre-order.

4 Implementation and interaction with the type-checker
SizeChangeTool takes as input Dedukti files or XTC files, the format of the termination
competition [20]. However, XTC does not include dependent types now, hence we proposed a
backward compatible extension of the format. In fact, the tool accepts this format extension.

Checking that the provided rules are confluent with β is left to the user. To check it auto-
matically, Dedukti offers an export to the format of the confluence competition. SizeChange-
Tool performs check of the 4 remaining hypotheses, to use the extension 8 of Thm. 7.

1. type preservation is checked by Dedukti assuming that the provided rewrite rules are
confluent with β. This algorithm can be found in [3].
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AST representation

XTC File

Dedukti File

Dedukti signature Type preservation

Symbols order Pruned signature Well-structuring

Call graph Size-change termination

Type ordering graph

Type ordering constraints
Strict positivity

→ Parser
→ Translation to Dedukti
→ Rule analyzer

Figure 1: SizeChangeTool Workflow

2. well-structuring requires to construct the pre-order described in Def. 6. Once this pre-
order is computed, Dedukti is reused to check if it is possible to type the right-hand side
of every rule using the pruned signature where symbols greater than the one defined are
removed.

3. size-change termination requires to analyze every rule in order to extract the dependency
pairs. Then the call-graph is constructed. To perform size-change termination checking,
one must compute the transitive closure of the call graph and verify the presence of a
−1 on the diagonal of every idempotent matrix labeling a loop. This check has been
implemented by Lepigre and Raffalli for the language PML2 [19]. SizeChangeTool
reuses their work to analyze the call graph.

4. the strict positivity condition requires to have a pre-order on type constructors. The
user is not asked to provide this order. While analyzing the rules, SizeChangeTool
constructs a graph whose vertices are type constructors and arrows means “is smaller or
equal to” as well as a list of constraints of the form “Type constructor A is strictly greater
than type constructor B.” To check that this relation is a pre-order, one checks that for
every constraint “A is strictly smaller than B.” there is no arrow between A and B in the
transitive closure of the graph.

For the sake of simplicity, representation of terms and rules are mainly shared between
Dedukti and SizeChangeTool. So the red arrows on Fig. 1 are (almost) the identity.
However those translation functions are made explicit, since one could imagine plugging another
type-checker on the rule analyzer offered by SizeChangeTool.

5 Comparison with other tools
As far as the author knows, there are no other termination checker combining dependent types
and non-orthogonal rewriting rules. However, dropping one of these features and restricting
ourselves to simply-typed higher-order rewriting systems or to dependently-typed orthogonal
systems permits comparison with existing tools.

For simply-typed systems, the termination competition [20] proposes a category “higher-
order rewriting union beta”. In 2019, there were only two tools competing in this category:
SizeChangeTool and Wanda [17]. Wanda uses multiple techniques to prove termination:
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dependency pairs, polynomial interpretations, HORPO. . . [15]. Unsurprisingly, the sole criterion
used in SizeChangeTool cannot prove as many examples as this wide range of techniques.

However, on the bench of the competition, SizeChangeTool is 11 times faster than
Wanda. The speed of SizeChangeTool permits it to show in less than 0.1 second ter-
mination of 3 examples on which Wanda is unable to answer with a timeout of 300 seconds:
Mixed_HO_10/deriv.xml encodes derivation of usual mathematical functions, like:2

rule der (λx, (&F x) + (&G x)) → λx: real , (der &F x) + (der &G x)
rule der (λx, ln (&F x)) → λx: real , (der &F x) / (&F x)

Hamana_17/churchNum.xml and Hamana_17/churchNum2.xml, contain the Church encoding of
natural numbers, with rules like:

rule two (λx, &I x) (λx, &J x) (λx, &F1 x) &Y1
→ &I (&I (λy, &J y)) (λy, &F1 y) &Y1

The very low time consumption of the presented criterion suggests that Wanda would improve
significantly its efficiency by implementing this technique.

If we restrict ourselves to orthogonal systems, it is then possible to compare our technique
to the ones implemented in Coq and Agda. Coq essentially implements a higher-order version
of primitive recursion [11], whereas Agda uses subterm criterion (a criterion very similar to
size-change termination) [1]. Hence, Coq cannot handle function definitions with permuted
arguments in function calls, which is not a problem for Agda and SizeChangeTool. Agda
recently added the possibility of declaring rewriting rules but this feature is highly experimental
and no check is performed on the rules. In particular, Agda termination checker does not handle
rewriting rules.

6 Conclusion and future work
For now on, the accepted input files are restricted to Dedukti and XTC files. One could
imagine extending it to other input formats, for instance the rewriting rules offered in Agda.

Following the approach adopted by Wanda, one could also just study truly higher-order
rules, use a state-of-the-art first-order prover for the remaining rules and then rely on a modu-
larity theorem to conclude. This strategy would improve the performance of SizeChangeTool
in the competition, since, according to C. Kop: “about half the benchmarks now do little more
than test the strength of the first-order back-end that some higher-order tools use.” [16].

One could also think of various enhancement of the criterion, for instance to handle rules
with a local increase of the size of the arguments like in:

rule f &x → g (s &x) rule g (s (s &x)) → f &x

Hyvernat proposed such an extension of SCT for constructor-based first-order languages [13].
Adapting other so-called “dependency pairs processors” [9] to the λΠ/R is of course another

active subject of study and would improve the tool.
Now that a higher-order rewriting with dependent types termination prover has been de-

veloped, one can hope such development will emulate other researches. The adoption of an
extension of XTC and the creation of a category for λΠ/R in the competition, would probably
support the creation of such new implementations.

2For sake of readability, examples are presented in Dedukti syntax and some η-reduction are performed.
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Abstract

Wanda is a fully automatic termination analysis tool for higher-order term rewriting.
In this paper, we will discuss Wanda’s underlying methodology. Most pertinently, this
includes a higher-order dependency pair framework, weakly monotonic algebras through
higher-order polynomials, and a variation of the higher-order recursive path ordering. All
techniques are employed automatically using SAT encodings.

1 Introduction

Termination of term rewriting systems (TRSs) has been an area of active research for several
decades. In the last twenty years the field of automatically proving termination has flourished,
and several strong provers have been developed to participate against each other in the annual
Termination Competition [22]. This competition includes various categories, including one
for higher-order term rewriting. This area of rewriting presents some unique challenges, for
example due to bound variables. Nevertheless, several tools have participated in this category
(Hot [2]), THOR [6], SizeChangeTool, Sol [12], Wanda), each using different techniques.

Wanda, a tool built primarily around higher-order dependency pairs, has been the leading
tool in this category since 2013. Wanda has also been used as a termination back-end in the
higher-order category of the International Confluence Competition [7], with both participating
tools in 2016 (ACPH [18] and CSIˆho [17]) delegating termination questions to Wanda.

In this paper I will discuss the most important techniques used in Wanda. To this end I
follow roughly the structure of an analysis by Wanda: first a higher-order TRS is read and (if
necessary) translated into Wanda’s internal formalism, AFSMs (§2); then basic techniques for
non-termination (§3) and for simple termination proofs using reduction pairs (§4) are applied.
Finally, responsibility is passed to the dependency pair framework (§5).

2 Higher-order term rewriting using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of similar but not fully compatible systems aiming to combine
term rewriting and typed λ-calculi. This is a problem, since users of various kinds of higher-
order TRSs may be interested in termination, and it would be frustrating to write a tool with
slightly altered techniques for every single style. Therefore, Wanda uses her own internal format,
AFSMs, which several popular kinds of rewriting systems can be translated into. AFSMs
(Algebraic Functional Systems with Meta-variables) are essentially simply-typed CRSs [13] and
also largely correspond to the formalism in [4]; they are fully explained in [15, Ch. 2] and in [10].

Terms are built from a set of simply-typed variables V and a set F of simply-typed function
symbols, using abstraction and application to form well-typed expressions. Term equality is
modulo α-conversion, but not modulo β or η. Meta-terms may additionally use meta-variable
applications, which are essentially unbound variables applied to a fixed number of arguments.
Rules are pairs ` ⇒ r of meta-terms of the same type, such that all meta-variables in r occur
also in `, both sides are closed (all their variable occurrences are bound) and ` is a pattern:
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for all sub-meta-terms of ` which have the form Z[s1, . . . , sk] t1 · · · tn necessarily n = 0 and
s1, . . . , sk are distinct variables. A set of rules R defines a rewrite relation ⇒R as the smallest
monotonic relation on terms that contains all instances of the rules as well as beta-reduction.

Meta-variables are used in early forms of higher-order rewriting such as Aczel’s Contraction
Schemes [1] and Klop’s Combinatory Reduction Systems [13]. They strike a balance between
matching modulo β-reduction and syntactic matching.

Example 2.1. The common example of a map function that applies a function on all elements
of a list can be expressed in two ways. First, with meta-variables that do not take arguments:

map F nil ⇒ nil

map F (cons H T ) ⇒ cons (F H) (map F T )

Second, with the meta-variable F of higher type taking one argument:

map (λx.F [x]) nil ⇒ nil

map (λx.F [x]) (cons H T ) ⇒ cons F [H] (map (λx.F [x]) T )

Both have similar typing and termination behaviour. However, note that λx.F [x] only matches
an abstraction: with the former rules, map suc nil can be rewritten; with the latter it cannot.

Example 2.2. Meta-variables are necessary to express certain rules; for example the rule
deriv (λx.sin F [x]) ⇒ λy.times (deriv (λx.F [x]) y) (cos F [y]). Here, we cannot replace
F [x] by an application F x because the result would not be a pattern (and would actually have
very different matching behaviour). Meta-variables with arguments can also alter termination
behaviour: an AFSM with rules a ⇒ f (λx.b) and f (λx.F [x]) ⇒ F [a] is terminating (since
a ⇒R f (λx.b) ⇒R b: the application of the abstraction to a is immediately evaluated), but
we obtain non-termination if the second rule is replaced by f F ⇒ F a (since then a ⇒R
f (λx.b)⇒R (λx.b) a, and we are not obliged to immediately β-reduce this term).

Various styles of higher-order rewriting use functional notation, e.g., map(F, cons(H,T )).
This is not merely a notational difference: in such a system, map cannot occur with only 1
argument. However, following [15, §2.3.1] and [14, §7], uncurrying does not affect termination
provided the rules are (essentially) unchanged: if a symbol f is always applied to at least k
arguments in the rules (i.e., f always occurs in the form f s1 · · · sn with n ≥ k) then we may
assign f an “arity” of k arguments (i.e., replace the above by f(s1, . . . , sk) sk+1 · · · sn). For this
reason, Wanda only allows applicative notation in the input, but then derives an arity and uses
functional notation in the output. To illustrate, in Example 2.1 map and cons have arity 2, so
the second rule would be denoted as map(F, cons(H,T ))→ cons(F H, map(F, T )).

Input to Wanda. Wanda accepts input files in the format of the termination competition
(which uses variables rather than meta-variables for matching and does not satisfy the pattern
restriction; this is transformed following [15] into an AFSM), or in a custom AFSM format:

nil : list

cons : nat -> list -> list

map : (nat -> nat) -> list -> list

map (/\x:nat.Z[x]) nil => nil

map (/\x:nat.Z[x]) (cons H T) => cons Z[H] (map Z T)

Wanda automatically derives arity 2 for both cons and map. Types should in principle be
simple types; type variables (which have a name that starts with $, e.g., $a, $b) are permitted,
but most termination techniques will fail for such polymorphic systems.
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3 Non-termination

Once the input has been read and – if necessary – converted to AFSM format, it is passed on to
the non-termination module. Since the focus in Wanda’s development has been on termination,
this module is very basic; it does only two things:

• First, right-hand sides of loops are evaluated to detect obvious loops. This is very weak,
but may capture systems such as {a⇒ f (λx.b), f F ⇒ F a} or {f X ⇒ f (g X)}.

• Second, since β-reduction is included in the rewrite relation, note that the rule f (g X)⇒
X is non-terminating if g : (α → α) → α and f : α → α → α for some type α: we then
have, for ω := g (λz.f z z), that f ω ω ⇒R (λz.f z z) ω ⇒β f ω ω. Wanda detects
variations of this example, such as encodings of the simply-typed λ-calculus.

Outside this module, non-termination is also shown as part of the DP framework (see §5).

4 Rule removal

Next, control passes to the rule removal module, which tries to embed the reduction relation
⇒R in the union of a well-founded ordering � and a compatible quasi-ordering %. If this
succeeds, the rules which cause a decrease by � can be deleted.

This module is not necessary : reduction pairs (%,�) are also used in the dependency pair
framework, where the requirements are more liberal. However, a proof using rule removal is
often simpler (giving more easily understandable proofs), and faster to find.

Wanda has two ways to generate reduction pairs: higher-order polynomial interpretations
and a version of the higher-order recursive path ordering. Both techniques originate from first-
order methods, and work best on terms in functional notation. Thus, the rules are uncurried,
using the “arity” discussed in §2 and new symbols @ to encode application as a function.

Example 4.1. The first AFSM of Example 2.1 has the following equivalent functional notation:

map(F, nil) ⇒ nil

map(F, cons(H,T )) ⇒ cons(@nat,nat(F,H), map(F, T )) (where F : nat→ nat)
@σ,τ (λx.F [x], Z) ⇒ F [Z] for all types σ, τ

Here, symbols @σ,τ : (σ → τ) → σ → τ and corresponding “beta”-rules are added for all σ, τ .
However, these extra rules are ignored in the implementation, as both higher-order polynomial
interpretations and StarHorpo are designed so that steps with these rules are always oriented.

Higher-order polynomial interpretations. Wanda’s first way to generate a reduction pair
is based on v.d. Pol’s weakly monotonic functionals [19]: all closed terms s are interpreted into
“weakly monotonic functionals” JsK over the natural numbers, in such a way that JsK ≥ JtK
whenever s ⇒R t; if a reduction with a certain rule always gives JsK > JtK, this rule may
be removed. For the sake of automation, Wanda particularly considers interpretations into
higher-order polynomials [9], which is implemented using an encoding to SAT.

Example 4.2. Consider the AFSM of Examples 2.1 and 4.1. The type of map is (nat →
nat)→ list→ list, so map should be interpreted by a weakly monotonic function that takes
as arguments: (1) a weakly monotonic function from N to N, and (2) a natural number. We do
this by choosing JnilK = 0 and Jcons(s, t)K = 1 + JsK + JtK and Jmap(S, t)K = 1 + JtK + JSK(0) +
JtK ∗ JSK(JtK) and J@nat,natK(S, t) = JSK(JtK) + JtK. With this choice, the interpretations of the
left-hand sides of the map rules are strictly greater than those of the right-hand sides.
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StarHorpo The recursive path ordering in Wanda is somewhat similar to the Computability
Path Ordering [5], but does not yet consider positive inductive types. On the other hand,
Wanda’s “StarHorpo” is stronger in some ways due to added features such as minimal symbols
and the treatment of application as a function symbol. A peculiarity of StarHorpo compared
to CPO is the use of “marked symbols” f?: an intermediate term f?(s1, . . . , sk) serves as an
upper bound for terms strictly stronger than f(s1, . . . , sk). This is used to obtain a transitive
definition (in contrast to CPO, where formally the ordering is defined as the transitive closure
of the definition). The full explanation of StarHorpo is available in [15, Chapter 5].

5 The higher-order dependency pair framework

If any rules remain, Wanda passes them on to the dependency pair module, which encompasses
the most powerful techniques of the tool. First, this module identifies the largest first-order
sub-TRS and passes it (with or without some extra rules) to a first-order termination prover.
Following [8], this may both be used to prove non-termination (with some extra checks, since
first-order termination tools do not consider typing), or to remove the dependency pairs for this
sub-TRS, which significantly lowers the proof obligation for the dependency pair framework.

Essentially, the DP framework within Wanda executes the following algorithm:

1. The AFSM is translated into an initial “DP problem”: a set of DPs (essentially: tuples
that identify function calls in the rules) coupled with a set of rules and some properties.

2. Then, a set S of DP problems (originally just the one above), is iteratively transformed
using DP processors. If this process reaches S = ∅, Wanda concludes termination.

Formally, the DP framework [11, 10] can also be used to prove non-termination, but this is
not done in Wanda. For ((2), the strongest processors are the dependency graph and reduction
triples: these triples use the orderings from §4, but have more liberal restrictions.

There are two variations of dependency pairs for higher-order rewriting in the literature:
dynamic [20, 16] and static [21, 10], each with distinct advantages and disadvantages. Both of
them are adapted to AFSMs in [15]; their difference is only in part (1) above. Wanda will try
the framework first with dynamic DPs, and then with static DPs. If the initial DP problem
given by the static approach is contained in the one for the dynamic approach, then the first
step is skipped (so only the static approach is used).

6 Conclusions and future work

Overall, Wanda reads an input file, converts it into AFSM if needed, performs an analysis follo-
wing §3–5 and then prints YES (the system terminates), NO (it does not terminate) or MAYBE

(neither could be proved). In the first two cases, this is followed by a human-readable proof.
There are many directions for improvement. Most pertinently, Wanda is optimised for the

format of the termination competition, and is weak when meta-variables take arguments. Also,
non-termination analysis is very limited and does not take advantage of the DP framework.
Other improvements could be to further extend first-order termination methods, build on pri-
marily higher-order techniques like sized types [3], and weaken the pattern restriction in AFSMs.

A complete discussion of most techniques in Wanda and the technology behind automating
them is available in the author’s PhD thesis [15]. Wanda is open-source and available from:

http://wandahot.sourceforge.net/
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Extended Abstract
Checking local confluence by computing critical pairs is the standard way to check ground confluence.
However, a perfectly reasonable equational program may be not locally confluent, and it can be very
hard, or even impossible, to make it so by adding more equations. Indeed, Knuth-Bendix completion
can often lead to an infinite loop and, even if it were to eventually succeed, can result in a highly bloated
and hard to understand specification.

The Maude’s Church-Rosser Checker (CRC) can be used to prove the ground local confluence of
order-sorted and possibly conditional equational programs modulo associativity/commutativity/identity
axioms. It supports three complementary methods. Method 1 ([DM10, DM12]) uses non-joinable crit-
ical pairs as completion hints to either achieve local confluence or reduce the number of critical pairs.
Method 2 ([DMR18]) uses an inductive joinability inference system to try to prove the critical pairs
ground joinable. Method 3 is used to prove the ground local confluence of a conditional equational
specification whose conditions belong to a subspecification that has already been proved ground conflu-
ent and operationally terminating, and that is conservatively extended by the overall specification.

Method 1 follows the suggestion of Knuth-Bendix. Since failure of a proof of local confluence will
generate a set of unjoinable critical pairs characterizing the most general cases in which rules cannot be
shown confluent, such critical pairs can be used as useful hints for a user to modify his/her specification.
If the new specification is locally confluent, operationally terminating, and sort-decreasing, we are done;
otherwise, we can repeat the process on the new specification. This leads to an iterative and incremental
process, in which the user repeatedly modifies his/her specification and re-checks the specification.

In practice, Method 1 works reasonably well, but it does not always lead to a locally confluent and
sort-decreasing specification. Once we reach the limits of Method 1, that is, we cannot further modify or
extend our specification without making it non-terminating, or simply too complex, we can try to prove
the ground joinability of the remaining critical pairs using the inductive joinability inference system
proposed in [DMR18]. Some of these pending critical pairs may be conditional. Although the inference
system do not directly handles the conditional case, it can still be used in a conditional setting for a
certain type of critical pairs.

Even though one could try to inductively prove the ground joinability of the original critical pairs,
by first applying Method 1 we may significantly reduce the number of critical pairs, therefore reducing
the proving effort. Furthermore, the user may have made mistakes in the original specification, so
that the rest of the process becomes meaningless. Our experience shows that Method 1 has, as a side
effect, the capability of revealing user mistakes, simply because it helps us to understand and identify

∗Acknowledgements. Work partly funded by the project PGC2018-094905-B-I00 (Spanish MINECO/FEDER), and by Univ.
Málaga, Andalucía Tech.
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potential issues. In such a case, Method 1 can be quite helpful in identifying such mistakes and help
the user restart the process with a new specification. However, by adding new equations we may have
changed the initial algebra semantics of the original specification. To ensure preservation of the initial
algebra semantics and the ground confluence of the original specification, we can use the same inductive
methods to prove ground joinability of all the equations added along the first step.

We still have one problem left. For operationally terminating conditional specifications it is in gen-
eral undecidable whether they are confluent. We may, for example, have a conditional critical pair
whose condition is unsatisfiable and therefore causes no confluence problems; but proving such unsatis-
fiability may be undecidable. One way to go would be to extend the inductive inference system to prove
joinability of conditional critical pairs. We however are currently working on a method that seems to be
more promising. The idea is rather simple, and basically consists in exploiting the hierarchical nature of
most specifications: we assume an operationally terminating specification (Σ, E ∪ B), which has a sub-
specification (Σ0, E0∪B0) that has already been shown to be ground convergent and, furthermore: (i) the
conditions in all equations in E \ E0 are Σ0-conditions and remain so after applying any substitutions;
and (ii) (Σ, E ∪ B) conservatively extends (Σ0, E0 ∪ B0) in the rewriting sense of not introducing any
new rewrites among Σ0-terms. Then, we can use the fact that (Σ0, E0 ∪ B0) is convergent and apply the
Church-Rosser Theorem to reason about the satisfiability/unsatisfiability of conditions in conditional
critical pairs at the inductive equational logic level.

In practice, the opportunities for applying Method 3 to order-sorted conditional specifications are
quite common, because specifications are typically developed in a modular way and also because it is
quite common that the conditions in conditional equations only involve a subset of functions that often
belong to already-defined submodules.
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Abstract

We propose a new non-joinability criterion based on weakly monotone algebras. It
generalizes the tree automata based approach of over-approximating the sets of successors
of each of the two terms. In contrast to Aoto’s criterion based on weakly monotone algebras
and usable rules, our approach uses different interpretations for the two source terms. The
criterion has been implemented for string rewriting in noko-leipzig, a participant of the 2019
Confluence Competition. The algebras are given by arctically weighted finite automata,
found by constraint solving.

1 Introduction

A TRS R is non-confluent if there are terms s, t that are convertible, but not joinable, that
is, →∗R(s) ∩ →∗R(t) = ∅. So, a semi-algorithm for proving non-confluence is to enumerate
convertible s and t, and look for certificates of their non-joinability.

If R is non-terminating, then →∗R(s) or →∗R(t) can be infinite. In order to establish non-
joinability, these sets, or some over-approximations, need to be represented in some finite way.
Such a representation can also be useful if these sets are finite, but impractically large.

Zankl et al. [8] represent sets of reachable terms by finite tree automata. We employ weighted
automata.

For classical automata A,B over-approximating →∗R(s) and →∗R(t), respectively, emptiness
of L(A)∩L(B) is non-accessibility of the final states in the Cartesian product automaton A×B.
For weighted automata, we instead check that their Kronecker product algebra has bounded
weights, and relate the bound to the Kronecker product A(s) ·B(t).

This improves on classical automata in that we can handle some non-regular sets. In partic-
ular, arctically weighted automata can count and compare numbers of occurrences of symbols.

Example 1. We establish non-joinability of ag and bh with respect to the rules

g → ag g → i h→ bh h→ i i→ abi ab→ ba ba→ ab.

Using arctically weighted automata one can show that #a(s) −#b(s) ≥ 1 (#a(s) denotes the
number of occurrences of a in s) for strings s reachable from ag, #b(s)−#a(s) ≥ 1 for strings
s reachable from bh, and that the sum of these two interpretations is 0 for all strings, which is
smaller than 1 + 1 = 2. Separating the successor of ag and bh using regular languages fails.

Our implementation of this method in noko-leipzig currently only handles the string rewrit-
ing case (one symbol is nullary, all others are unary). Noko-leipzig took part in the 2019
Confluence Competition,1 where it achieved the highest number of NO answers in the SRS
category, namely 34. The runner-up CSI had 28 NO answers.

1CoCo 2019, http://project-coco.uibk.ac.at/2019/
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2 Preliminaries

We assume familiarity with term rewriting [2]. In the following, Σ denotes a signature, X a set
of variables, R a term or string rewrite system (TRS or SRS), →R a single rewrite step, →∗R
reachability, and s, t, u denote terms (we regard strings as terms).

Given a signature Σ, a Σ-algebra A has a carrier A and, for each function symbol f ∈ Σ with
arity n, an interpretation fA : An → A. Given an assignment α : X → A, the interpretation
[t]Aα of a term s is defined inductively by

[t]Aα =

{
[f(t1, . . . , tn)]Aα = fA([t1]Aα , . . . , [tn]Aα ) if t = f(t1, . . . , tn) for f ∈ Σ

α(t) if t ∈ X .

For ground terms t we may omit the α, writing [t]A. A weakly monotone Σ-algebra A is
a Σ-algebra equipped with a partial order ≤ on the carrier that satisfies fA(a1, . . . , an) ≤
fA(a′1, . . . , a

′
n) whenever ai ≤ a′i for all 1 ≤ i ≤ n. Let A and B be weakly monotone Σ-algebras.

A map h : A→ B is a pre-homomorphism if it is weakly monotone (a ≤ a′ implies h(a) ≤ h(a′))
and satisfies h(fA(a1, . . . , an)) ≤ fB(h(a1), . . . , h(an)) for all f ∈ Σ and a1, . . . , an ∈ A.

A weakly monotone Σ-algebra A weakly orients a TRS R if we have [l]Aα ≤ [r]Aα for all rules
l → r ∈ R and assignments α : X → A. This implies [s]Aα ≤ [t]Aα whenever s →∗R t. Note that
the order is flipped compared the convention for termination of TRSs.

3 Results

We start out by giving an abstract non-joinability criterion based on weakly monotone algebras.

Lemma 2. Let Σ be a signature, R be a TRS over Σ and s, t ∈ T (Σ) ground terms. Further-
more let A, B be weakly monotone Σ-algebras such that R is weakly oriented by both A and
B, and let C be a partially ordered set. Finally, let δ : A × B → C be a weakly (bi-)monotone
function. Then s and t are non-joinable if, for some c ∈ C,

1. δ([s]A, [t]B) 6≤ c, and
2. δ([u]A, [u]B) ≤ c for all u ∈ T (Σ).

Proof. Assume that s and t have a common reduct u: s →∗R u ∗
R← t. Then [s]A ≤ [u]A and

[t]B ≤ [u]B, because R is weakly oriented by A and B. Consequently, by monotonicity of δ we
have δ([s]A, [t]B) ≤ δ([u]A, [u]B) ≤ c, contradicting the first assumption.

In order to obtain a finite criterion, we extend C to be a weakly monotone algebra as well,
leading to the following result.

Theorem 3. Let A, B, C be weakly monotone Σ-algebras such that R is weakly oriented by
both A and B, s, t ∈ T (Σ) be ground terms and δ : A×B → C be a pre-homomorphism between
weakly monotone Σ-algebras. Then s and t are non-joinable provided that for some c ∈ C,

1. δ([s]A, [t]B) 6≤ c, and
2. fC(c, . . . , c) ≤ c for all f ∈ Σ.

Remark 4. The condition that δ is a pre-homomorphism between weakly monotone Σ-algebras
means that δ is weakly monotone and that for all f ∈ Σ, a1, . . . , an ∈ A, b1, . . . , bn ∈ B,

δ(fA(a1, . . . , an), fB(b1, . . . , bn)) ≤ fC(δ(a1, b1), . . . , δ(an, bn)).
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Proof. First we show that δ([u]A, [u]B) ≤ c for all ground terms u by induction on u:

δ([f(u1, . . . , un)]A, [f(u1, . . . , un)]B) = δ(fA([u1]A, . . . , [un]A), fB([u1]B, . . . , [un]B))

≤ fC(δ([u1]A, [u1]B), . . . , δ([un]A, [un]B))

≤ fC(c, . . . , c) ≤ c.

We conclude by Lemma 2.

4 Algebras from Finite Weighted Automata

We instantiate the general approach to algebras represented by finite weighted automata over
some ordered semi-ring [5] (S, 0, 1,+, ·,≤) where multiplication is commutative, the order is
weakly monotonic w.r.t. both operations, and S is positive (∀s ∈ S : 0 ≤ s).

Examples of such semi-rings are the natural numbers N with standard addition, product,
and order; Booleans (B,F,T,∨,∧,≤) with F < T; and arctic integers (A,−∞, 0,max,+,≤)
where A = {−∞} ∪ Z, and operations on Z extended suitably.

An S-weighted tree automaton [3] A over alphabet Σ, with set of states Q, is given by a
family of transition mappings µk : Σk → (Qk ×Q → S), and a root weight vector ν : Q → S.
The algebra µA of this automaton has domain (Q → S,≤). These are Q-indexed vectors of S
values, ordered point-wise. Operations of µA are defined via µk in a standard way.

We note the special case of weighted word automata where µ0(ε) is a Q-vector, and µ1(f)
is a Q-by-Q matrix that operates on the domain by multiplication from the right. (To make
the connection to terms, we regard the string fg as εfg = g(f(ε)).)

Under the given restrictions, the cross product automaton A×B computes the Hadamard
product µA � µB , which is a pre-homomorphism of algebras.

Example 5. We revisit the SRS from the introduction consisting of the rules

g → ag g → i h→ bh h→ i i→ abi ab→ ba ba→ ab.

We use the following interpretations over the arctic integers for A and B:

εA = 0 aA(x) = x+ 1 bA(x) = x− 1 gA(x) = x hA(x) = −∞ iA(x) = x

εB = 0 aB(x) = x− 1 bB(x) = x+ 1 gB(x) = −∞ hB(x) = x iB(x) = x

This corresponds to arctic automata with a single state that are compatible with all the given
rules. In this case the Kronecker product is just addition, and it’s easy to verify that x ≤ 0
implies aA(x) + aB(x) ≤ 0, bA(x) + bB(x) ≤ 0, and so on. On the other hand, [ag]A + [bh]B =
1 + 1 6≤ 0, so ag and bh are not joinable.

Note that due to the rules ab → ba, ba → ab, and i → abi we have joinability of s and t
whenever s, t ∈ {a, b}∗i and #a(s)−#b(s) = #a(t)−#b(t). Since we can use g (h) to produce
an arbitrary number of extra a-s (b-s) starting from ag (bh) before producing an i, counting the
number of a-s and b-s is essential for proving non-joinability of ag and bh. This is impossible
with finitely many states, so the classical automata approach fails.

5 Implementation: Noko Leipzig

Noko-leipzig is a spin-off of the Matchbox termination prover [7]. It contains the following
semi-algorithm for disproving joinability:

3
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• input: SRS R over Σ, words s, t ∈ Σ∗, numbers d, b ∈ N.

• output (if successful): arctically weighted automata A,B, and arctic vector c ∈ (QA ×
QB → A), such that the algebras µA, µB , µA � µB and vector c fulfil the conditions of
Theorem 3, where A and B have d states and all arctic numbers are represented by b bits.

The implementation works via transformation to a Boolean satisfiability problem, using the
Ersatz library [6]. We briefly analyze noko-leipzig’s six unique NO answers in the SRS category
of CoCo 2019. Only two of these answers (Cops2 1034 and 1131) use the technique described
here. In the case of Cop 1034, the languages →∗R(s) and →∗R(t) are finite, so let us focus on
Cop 1131.

Example 6. Cop 1131 is the SRS R = {a → caa, b → aca, b → acb, b → bab, c → cac}. Noko-
leipzig proves that s = aca ← · → bab = t is non-joinable, using two-state automata. With
different search parameters (fixing the number of states to one), we obtain a shorter proof that
is similar to the one in Example 1: A is a one-state automaton that computes the function

A : w 7→ if b ∈ w then −∞ else #c(w)−#a(w),

(this is accomplished by assigning weights −1, −∞, 1 and 0 to a, b, c and ε, respectively) and
B is a one-state automaton that computes the function

B : w 7→ #a(w) + #b(w)−#c(w).

The product automaton A×B computes the function

C : w 7→ if b ∈ w then −∞ else 0.

We have A(s) = −1 and B(t) = 3, thus, A(s) ·B(t) = 2 6≤ C(w).

6 Related Work

The following example shows that our criterion generalizes non-joinability analysis using com-
patible tree automata. [4, 8]

Example 7 (compatible tree automata). Recall the following criterion: Let A = (QA, FA,∆A),
B = (QB , FB ,∆B) be tree automata that are compatible with R. If s ∈ L(A), t ∈ L(B), and
L(A) ∩ L(B) = ∅, then s and t are not joinable. We show that this criterion is an instance of
Lemma 2 and of Theorem 3.

The automaton A gives rise to a weakly monotone Σ-algebra A on 2QA with ⊆ as the
underlying order and interpretations for f ∈ Σ given by the transition functions

fA(Q1, . . . , Qn) = {q | f(q1, . . . , qn)→ q ∈ ∆A and qi ∈ Qi for 1 ≤ i ≤ n}.

Compatibility of A with R implies that A weakly orients R. The same considerations apply to
the automaton B, giving rise to a weakly monotone Σ-algebra B that weakly orients R.

Using these algebras, the memberships s ∈ L(A), t ∈ L(B) translate to [s]A 6⊆ QA − FA
and [t]B 6⊆ QB − FB , respectively, which is equivalent to [s]A × [t]B 6⊆ QA × QB − FA × FB .
The statement L(A)∩L(B) = ∅ can be expressed as [u]A× [u]B ⊆ QA×QB −FA×FB for all
ground terms u. By Lemma 2, non-joinability of s and t follows, using C = 2QA×QB with ⊆ as
the underlying order, δ(P,Q) = P ×Q, and c = QA ×QB − FA × FB .

2See the confluence problems database, https://cops.uibk.ac.at/
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To make Theorem 3 applicable, consider the intersection product tree automaton A × B
with final states FA×FB . Let C be the corresponding weakly monotone Σ-algebra on 2QA×QB ,
ordered by ⊆. The set R of reachable states of A×B satisfies fC(R, . . . , R) ⊆ R for all f ∈ Σ;
in fact it is the smallest set with this property. Furthermore, since R ⊆ QA × QB − FA × FB
(otherwise L(A) ∩ L(B) would be non-empty), we have [s]A × [t]B 6⊆ R. So Theorem 3 applies
using δ(P,Q) = P ×Q and c = R.

In fact, a classical non-weighted tree automaton is a B-weighted tree automaton, and the
non-weighted intersection product automaton is the Hadamard product.

We believe that our results are incomparable to Aoto’s criterion based on weakly monotone
algebras and usable rules [1]. Let us recall the result:

Theorem 8 (Aoto 2013). Let D be a weakly monotone Σ-algebra such that U(s,R) is weakly
oriented by (D,≤) and U(t,R) is weakly oriented by (D,≥). Then s, t are non-joinable provided
that [s]D 6≤ [t]D.

One difference to our results is the incorporation of usable rules, denoted by U(s,R). Ideally,
this would be the set of rules that are applicable to successors of s; in practice, it is an over-
approximation of that set. We leave the discussion of usable rules for future work.

The other notable difference is that only one interpretation D is used. We can fit that into
the setup of Lemma 2 by using (D,≤) for A, (D,≥) for B, A × B for C, and δ(a, b) = (a, b).
Then s →∗R u ∗

R← t would imply δ([s]A, [t]B) ≤ δ([u]A, [u]B). The latter is equivalent to
[s]D ≤ [u]D ≤ [t]D, contradicting the assumption [s]D 6≤ [t]D, so non-joinability of s and t
follows. Note that the term u is not analyzed at all; the only fact about u that is used in this
argument is that [u]A = [u]D = [u]B. This is in stark contrast to the idea underlying Theorem 3,
namely to establish an upper bound for [u]C for all ground terms u.
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Abstract

We study the confluence property for rewriting systems whose underlying set of terms
admits a vector space structure. For that, we use deterministic reduction strategies. These
strategies are based on the choice of standard reductions applied to basis elements. We
provide a sufficient condition of confluence in terms of the kernel of the operator which
computes standard normal forms. We present a local criterion which enables us to check
the confluence property in this framework. We show how this criterion is related to the
Diamond Lemma for terminating rewriting systems.

1 Introduction

The fact that local confluence together with termination implies confluence has been known
for abstract rewriting systems since Newman’s work [8]. For rewriting on noncommutative
polynomials, a similar result known as the Diamond lemma was introduced by Bergman [2]
nearly 30 years later, in order to compute normal forms in noncommutative algebras using
rewriting theory. It asserts that for terminating rewriting systems, the local confluence property
can be checked on monomials.

One difficulty of rewriting polynomials is that the naive notion of rewriting path (obtained as
the closure of the generating rewriting relations under reflexivity, transitivity, sum and product
by a scalar) does not terminate. Instead, one needs to first consider well-formed rewriting steps
before forming the reflexive transitive closure.

Nevertheless the Diamond lemma has proved to be very useful : together with the works of
Bokut [3], it has given birth the theory of noncommutative Gröbner bases [7]. The latter have
provided applications to various areas of noncommutative algebra such as the study of embed-
ding problems (which appear in the works of Bokut and Bergman), homological algebra [4, 5]
or Koszul duality [1, 9].

Computation of normal forms in noncommutative algebra is also used to provide formal
solutions to partial differential equations. In this framework, a confluence criterion analogous
to the Diamond Lemma is given by Janet bases [10], which specify a deterministic way to reduce
each polynomial into normal form using standard reductions [6]. The confluence criterion may
then be asserted as follows: for each monomial m and each non-standard reduction m → f , f
is reducible into m̂, where the latter is obtained from m using only standard reductions.

In the presented paper, we propose an extension of the Diamond Lemma which offers two
improvements over the one from Bergman: first it allows the treatment of non-terminating
rewriting relations, and second it does not presuppose a notion of well-formed rewriting steps.
This last property seems particularly promising in order to extend the Diamond Lemma to
other structures.
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Instead of supposing that the rewriting relation studied is terminating, we suppose given an
ordering on the monomials, independent of the rewriting relation. We then use methods based
on standard reductions: for every monomial m, we select exactly one reduction with left-hand
side m, which is decreasing for the ordering chosen. Such choices induce a deterministic way
to reduce each polynomial, obtained by applying simultaneously standard reductions on every
monomial appearing in its decomposition. When these deterministic reductions terminate, one
defines an operator which maps every polynomial to its unique standard normal form.

From this operator, we define a suitable notion of confluence in our setting, and show in
Proposition 3.4 that it implies the usual notion of confluence for the rewriting system studied.
We then provide an effective method for checking this criterion in Theorem 3.7. This method is
based on a local analysis corresponding to checking local confluence on monomials. In particular,
when the rewriting system is terminating, we show (Theorem 3.9) that we recover the Diamond
Lemma as a particular case of Theorem 3.7.

2 Local strategies and h-normal forms

We fix a commutative field K as well as a well-founded partially ordered set (X,<X). We
denote by KX the vector space spanned by X: an element v ∈ KX is a finite formal linear
combination of elements of X with coefficients in K. The sum of u =

∑
λxx and v =

∑
µxx

equals
∑

(λx + µx)x and the product of λ ∈ K by v equals
∑

(λλx)x. For every v ∈ KX, there
exists a unique finite set supp(v) ⊂ X, called the support of v, such that

v =
∑

x∈supp(v)

λxx and x ∈ supp(v)⇒ λx 6= 0. (1)

We extend the order <X into the multiset order on KX, denoted <KX : for any u, v ∈ KX,
u <KX v if supp(u) 6= supp(v) and for any x ∈ supp(u) \ supp(v), there exists y ∈ supp(v) \
supp(u) such that y >X x. Note that <KX and <X coincide when restricted to X, so we simply
denote this order by < in the rest of this paper.

We fix a set R ⊆ X × KX which represents rewrite rules of the form x −→
R

r. The set R
induces a rewriting relation on KX which reduces many x’s at once and defined as follows:

∑

x

λxx+ v −→
R

∑

x

λxrx + v, (2)

where v is any element of KX, and for any x ∈ X appearing in the sum, λx 6= 0, x −→
R

rx ∈ R
and x /∈ supp(v). Finally we denote by ∗←→

R
the closure of −→

R
under transitivity, symmetry

and sum.

Definition 2.1. A local strategy h for R is the choice, for every x ∈ X not minimal for <, of
a rewriting rule hx = x −→

R
rx such that rx < x.

In the rest of this paper, we suppose chosen such a local strategy h (note that such an h may
not exist). Any vector v can be decomposed in a unique way as

∑
λxx+v

′, where y ∈ supp(v′)
implies that y is minimal for <, and x ∈ supp(v)\supp(v′) is not. We define a rewriting relation
−→
h

as follows:

hv =
∑

λxx+ v′ −→
h

∑
λxrx + v′, (3)

where for every x, hx = x −→
R

rx. Note in particular that if x is minimal for <, then hx = x→ x

is the identity on x.

2
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Definition 2.2. A vector v is said to be an h-normal form if it is a normal form for −→
h

.

Example 2.3. Let X = {x, y, z, t}, x −→
R

y, y −→
R

z + t, z −→
R

y − t. Note that this is not

terminating since we have the infinite loop y −→
R

z+ t −→
R

(y− t)+ t = y. We choose the order
x > y > z, t, and the following distinguished rewrite rules: hx = x −→

h
y and hy = y −→

h
z + t.

Then the R-normal forms are the λtt, while the h-normal forms are all the expressions of the
form λtt+ λzz.

Lemma 2.4. Let v be a vector in KX. Either v is minimal for <, or there exists v′ < v such
that v −→

h
v′. In particular, h-normal forms are precisely the minimal elements of KX for <.

For each v ∈ KX and strategy local strategy h, there exists at most one v′ such that v −→
h

v′,
and −→

h
is compatible with the termination order <. As a consequence, any v ∈ KX is sent by

multiple applications of −→
h

to a unique h-normal form that we denote by H(v). This defines
a map H : KX → KX.

Proposition 2.5. The map H is a linear projector, in the sense that for all u, v ∈ KX and
λ ∈ K, H(u+ v) = H(u) +H(v), H(λu) = λH(u) and H(H(u)) = H(u).

Proof. The h-normal forms are closed under sums, so that H(H(v)) = H(v) for every v, that
is H is a projector. Moreover, if u −→

h
u′ and v −→

h
v′, then we have u + v −→

h
u′ + v′.

Iterating −→
h

, we get H(u+ v) = H(H(u) +H(v)) = H(u) +H(v).

3 A confluence criterion

In this section we investigate the confluence properties of R. The main idea behind this section
is that under suitable hypothesis −→

h
should form a terminating, confluent subrelation of −→

R
.

We start in Definition 3.1 and the following propositions by relating the confluence of −→
R

to properties on h. Then Theorem 3.7, we prove a confluence criterion to check whether R
satisfies Definition 3.1.

Definition 3.1. We say that R is h-confluent if for every rewrite rule x −→
R

v ∈ R, we have

H(x− v) = 0.

Example 3.2. Let us take the same example as in Example 2.3. We have three equations to
check:

H(x) = z + t = H(y), H(y) = z + t = H(z + t), H(z) = z = H(y − t),
and so R is h-confluent. Replacing the rule z −→

R
y − t by z −→

R
y, we get H(z) = z and

H(y) = z + t, so R is not h-confluent anymore.

Proposition 3.3. If R is h-confluent, then u ∗←→
R

v if and only if H(u− v) = 0.

Proof. The relation ∗←→
R

is the closure of −→
R

under transitivity, symmetry and sum. Since the

relation H(u− v) = 0 is closed under these operations, we get one implication.
Reciprocally, if H(u − v) = 0 then by definition of H we have u ∗←→

h
v, and in particular

u
∗←→
R

v.

3
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Proposition 3.4. If R is h-confluent then −→
R

is confluent.

Proof. Let v, v1, v2 ∈ KX be such that v ∗−→
R

vi, for i = 1, 2. From Proposition 3.3, v1 − v2
belongs to ker(H), that is H(v1) = H(v2). Denoting by u the common value, we get vi

∗−→
R

u,
which proves the proposition.

Note that the previous proposition is a sufficient but not a necessary condition: taking X
to be the integers, with the relations n −→

R
n+ 1 is confluent, but there exist no local strategy

h making R h-confluent.
We now introduce our criterion to show that R is h-confluent. For that, we assume that the

set of relations R is equipped with a well-founded order ≺ satisfying the following decreasingness
property:

Definition 3.5. We say that R is locally h-confluent if for every x ∈ X and f = x −→
R

v, then
letting hx = x −→

h
rx, we have the confluence diagram:

x
f //

hx

��

vOO

∗
��

rx oo
∗ // v′,

where each rewriting step occurring in the dotted arrows is strictly smaller than f with respect
to ≺.

Example 3.6. Continuing with Example 2.3, let us define an order ≺ on R by the following
ordering: (x −→

R
y), (y −→

R
z + t) ≺ (z −→

R
y − t). This is guided by the heuristic that rules

advancing towards an h-normal form should be favored over rules that do not: here z is an
h-normal form so the rule rewriting it is large for ≺. The following diagrams show that R is
locally h-confluent:

x
R
//

hx

��

y

y y

y
R
//

hy

��

z + t

z + t z + t

z
R
//

hz

y − t
R

��
z z

Our main result is the following.

Theorem 3.7. If R is locally h-confluent, then R is h-confluent. In particular, −→
R

is confluent.

Proof. We reason by induction on r according to the order ≺. Looking at the square corre-
sponding to r:

x
r //

hx

��

vOO

∗
��

rx oo
∗ // v′,

we have H(x) = H(rx) by definition of H, and H(rx) = H(v′) = H(v) by induction hypothesis,
which concludes the proof.

4
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Remark 3.8. Local h-confluence implies that the pair of rewriting relations (−→
h
,−→

R
) is

decreasing with respect to conversions (see [11, Definition 3]), using the order ≺ on R and the
discrete ordering on −→

h
. By [11, Theorem 3], this implies that (−→

h
,−→

R
) commute. Using the

fact that −→
h
⊆−→

R
, one can then recover that −→

R
is confluent.

Let us show how the Diamond Lemma fits as a particular case of our setup.

Theorem 3.9 ([2]). Assume that −→
R

is terminating and that for every x ∈ X, x −→
R

r and

x −→
R

r′ ∈ R, r and r′ are joinable. Then, −→
R

is confluent.

Proof. We define an ordering x > y on X as the transitive closure of the relation “there exists
v ∈ KX such that x −→

R
v and y ∈ supp(v)”. This is well-founded since by hypothesis −→

R
is

terminating. By definition, if x ∈ X is not minimal for >, then x is not an R-normal form.
Let us fix an arbitrary rewriting step hx = x −→

h
rx. By definition of >, for any y ∈ supp(rx)

we have y < x and so rx < x, which shows that h is a local strategy. Ordering the rewrite
rules by their left hand sides makes R locally h-confluent. Theorem 3.7 finally shows that R is
confluent.

Conclusion. We introduced a sufficient condition, based on deterministic reduction strate-
gies, of confluence for rewriting systems on vector spaces. As a particular case, we recover the
Diamond Lemma. This work maybe extended in particular into two main directions. The first
one consists in weakening our assumption on the set K of coefficients, by allowing non invertible
coefficients. A second extension consists in characterising Janet bases in this framework, with
the objective to develop constructive methods in the analysis and formal resolution of PDE’s.
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Abstract

Given a Conditional Term Rewriting System (CTRS) R and terms s and t, we say that
the reachability condition s →∗ t is feasible if there is a substitution σ instantiating the
variables in s and t such that the reachability test σ(s) →∗R σ(t) succeeds; otherwise, we
call it infeasible. Checking infeasibility of such (sequences of) reachability conditions is
important in the analysis of computational properties of CTRSs, like confluence or opera-
tional termination. Recently, a logic-based approach to prove and disprove infeasibility has
been introduced. In this paper we present infChecker, a new tool for checking infeasibility
which is based on such an approach.

1 Introduction

When analyzing the computational behaviour of CTRSs R, consisting of rules ` → r ⇐ s1 ≈
t1, . . . , sn ≈ tn, we need to consider two kinds of computations: (1) the reduction of expressions
in the usual way, i.e., by replacing an instance σ(`) of the left-hand side ` by the instance σ(r)
of the right-hand side r using a matching substitution σ and (2) the evaluation of the conditions
si ≈ ti in the rules, which (for oriented CTRSs) are treated as reachability tests σ(si)→∗ σ(ti).
In this setting, representing rewriting steps in CTRSs as proofs of goals in the logic of (oriented)
CTRSs with inference system in Figure 1 becomes a natural way to represent computations [6].
Given a CTRS R, an inference system I(R) is obtained from the inference rules in Figure 1
by specializing (C )f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k and (Rl)ρ for
all conditional rules ρ : ` → r ⇐ c in R. We write s →R t (resp. s →∗R t) iff there is a proof
tree for s→ t (resp. s→∗ t) using the inference system I(R), whose rules are schematic in the

sense that each inference rule B1 ··· Bn

A can be used under any instance σ(B1) ··· σ(Bn)
σ(A) of the

rule by a substitution σ.

(R) x→∗ x (T)
x→ y y →∗ z

x→∗ z

(C)f,i

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk) (Rl)ρ

s1 →∗ t1 · · · sn →∗ tn
`→ r

for all f ∈ F(k) and 1 ≤ i ≤ k for ρ : `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

Figure 1: Inference rules for conditional rewriting with an oriented CTRS R with signature F

∗Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098,
and SP20180225.

†Raúl Gutiérrez was also supported by INCIBE program “Ayudas para la excelencia de los equipos de
investigación avanzada en ciberseguridad”.
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A first-order theory R associated to R, where → and →∗ are seen as predicates, is obtained
from I(R): the inference rules B1 ··· Bn

A in I(R) are considered as sentences (∀x1, . . . , xm)B1∧
· · · ∧ Bn ⇒ A, where {x1, . . . , xm} is the (possibly empty) set of variables occurring in the
atoms B1, . . . , Bn and A. If such a set is empty, we write B1 ∧ · · · ∧Bn ⇒ A.

Example 1. Consider the following CTRS R (903.trs1):

le(0, s(y)) → true
le(s(x), s(y)) → le(x, y)

le(x, 0) → false

min(cons(x, nil)) → x
min(cons(x, xs)) → x⇐ min(xs) ≈ y, le(x, y) ≈ true
min(cons(x, xs)) → y ⇐ min(xs) ≈ y, le(x, y) ≈ false

The first-order theory R for R is:

(∀x) x→∗ x (1)

(∀x, y, z) x→ y ∧ y →∗ z ⇒ x→∗ z (2)

(∀x, y) x→ y ⇒ s(x)→ s(y) (3)

(∀x, y, z) x→ y ⇒ cons(x, z)→ cons(y, z) (4)

(∀x, y, z) x→ y ⇒ cons(z, x)→ cons(z, y) (5)

(∀x, y, z) x→ y ⇒ le(x, z)→ le(y, z) (6)

(∀x, y, z) x→ y ⇒ le(z, x)→ le(z, y) (7)

(∀x, y) x→ y ⇒ min(x)→ min(y) (8)

(∀y) le(0, s(y))→ true (9)

(∀x, y) le(s(x), s(y))→ le(x, y) (10)

(∀x) le(x, 0)→ false (11)

(∀x) min(cons(x, nil))→ x (12)

(∀x, y, xs) min(xs)→∗ y ∧ le(x, y)→∗ true⇒ min(cons(x, xs))→ x (13)

(∀x, xs) min(xs)→∗ y ∧ le(x, y)→∗ false⇒ min(cons(x, xs))→ y (14)

2 Feasibility Sequences

Given a CTRS R and terms s and t, we say that the atom s→∗ t is R-feasible (or just feasible
if no confusion arises) if there is a substitution σ such that the reachability test σ(s) →∗R σ(t)
succeeds. As in [5, Definition 2], sequences G = (si →∗ ti)ni=1, where n > 0, are called feasibility
sequences.2 We say that G is R-feasible if there is a substitution such that σ(si) →∗R σ(ti)
holds for all 1 ≤ i ≤ n; we call G infeasible otherwise. In [4, 5], we presented an approach to
deal with infeasibility using a satisfiability criterion: a sequence G as above is infeasible if the
first-order theory R together with the negation of the sentence

(∃~x)

n∧

i=1

si →∗ ti (15)

where ~x are the variables occurring in terms si and ti for 1 ≤ i ≤ n, is satisfiable by any
interpretation A of the function and predicate symbols, i.e., A |= R∪{¬(15)} holds [5, Theorem
6]. Actually, as showed in [3], if (15) is a logical consequence of R (i.e., R ` (15) holds), then
the feasibility of G is proved. Thus, this logical approach provides a sound and complete method
to (dis)prove feasibility.

Example 2. Continuing with Example 1, the sequence: min(nil) →∗ x, le(y, x) →∗ true
corresponds to the following first-order formula (15): (∃x, y)min(nil)→∗ x ∧ le(y, x)→∗ true

In this paper, we present infChecker, a tool for proving and disproving feasibility conditions
taking advantage of this logical approach:

http://zenon.dsic.upv.es/infChecker/

1This problem belongs to the database COPS of confluence problems in http://cops.uibk.ac.at/
2In [5, Definition 2] atoms s→ t are also considered in feasibility sequences.
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3 Feasibility Framework

In order to automatically analyze whether a sequence G is feasible or infeasible, we describe a
framework similar to the one presented in [1] for termination purposes. We define appropriate
notions of (feasibility) problem and processor and show how to apply processors in order to
prove or disprove feasibility.

Definition 3 (fProblem and fProcessor). An fProblem τ is a pair τ = (R,G), where R is
a CTRS and G is a sequence (si →∗ ti)ni=1. The fProblem τ is feasible if G is R-feasible;
otherwise it is infeasible.

An fProcessor P is a partial function from fProblems into sets of fProblems. Alternatively,
it can return “yes”. Dom(P) represents the domain of P, i.e., the set of fProblems τ that P is
defined for.

An fProcessor P is sound if for all τ ∈ Dom(P), τ is feasible whenever either P(τ) =“yes”
or ∃τ ′ ∈ P(τ), such that τ ′ is feasible.

An fProcessor P is complete if for all τ ∈ Dom(P), τ is infeasible whenever ∀τ ′ ∈ P(τ), τ ′

is infeasible.

Feasibility problems can be proved or disproved by using a proof tree as follows.

Theorem 4 (Feasibility Proof Tree). Let τ be an fProblem. A feasibility proof tree T for τ
is a tree whose inner nodes are labeled with fProblems and the leaves may also be labeled with
either “yes” or “no”. The root of T is labeled with τ and for every inner node n labeled with
τ ′, there is a processor P such that P ∈ Dom(P) and: (1) if P(τ ′) = “yes” then n has just one
child, labeled with“yes”; (2) if P(τ ′) = ∅ then n has just one child, labeled with “no”; and (3) if
P(τ ′) = {τ1, . . . , τk} with k > 0, then n has k children labeled with the fProblems τ1, . . . , τk.

Theorem 5 (Feasibility Framework). Let R be an oriented CTRS, G be a feasibility sequence,
and T be a feasibility proof tree for τI = (R,G). Then: (1) if all leaves in T are labeled with
“no” and all involved fProcessors are complete for the fProblems they are applied to, then G is
R-infeasible; and (2) if T has a leaf labeled with “yes” and all fProcessors in the path from τI
to the leaf are sound for the fProblems they are applied to, then G is R-feasible.

In the following subsections we describe a number of sound and complete fProcessors.

3.1 Satisfiability Processor

The following processor integrates the satisfiability approach described in [5] to prove infea-
sibility in our framework. When dealing with reachability, i.e., all the left-hand sides of the
feasibility conditions in G are ground, we can restrict our theory to the set of usable rules.
Given an fProblem (R,G), we let

U(R,G) =

{ ⋃
si→∗ti∈G U(R, si) if all si in G are ground

R otherwise

where, given a CTRS R and a term t, U(R, t) are the usable rules R regarding t [5, Section 2].

Theorem 6 (Satisfiability Processor). Let τ = (R,G) be an fProblem with G = (si →∗ ti)ni=1.

Let A be a structure such that A 6= ∅ and A |= U(R,G) ∪ {¬(∃~x)
∧n
i=1 si →∗ ti}. The processor

PSat given by PSat(τ) = ∅ is sound and complete.

In infChecker, we use the model generators AGES [2] and Mace4 [8] to find suitable structures
A to be used in the implementation of PSat.

Example 7. For R in Example 1 and G in Example 2, we obtain PSat(τI) = ∅ using AGES.
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3.2 Provability Processor

The following processor integrates the logic-based approach to program analysis described in
[3] to prove feasibility by theorem proving.

Theorem 8 (Provability Processor). Let τ = (R,G) be an fProblem with G = (si →∗ ti)ni=1

such that R ` (∃~x)
∧n
i=1 si →∗ ti holds. The processor PProv given by PProv(τ) = “yes” is sound

and complete.

In infChecker, we use the theorem prover Prover9 [8] as a backend to implement PProv.

Example 9. For R in Example 1 and G = le(x,min(y)) →∗ false,min(y) →∗ x (836.trs)
with associated first-order formula (15) as follows:

(∃x, y) le(x,min(y))→∗ false ∧min(y)→∗ x (16)

we have PProv(τI) = “yes” by using Prover9.

3.3 Narrowing on Feasibility Conditions Processor

In the context of the 2D DP framework [7], there are powerful processors that can be applied
to the conditions of the rules in order to simplify those conditions. We adapt the processor that
narrow conditions to be used on fProblems.

Let N1(S, s) = {(t, θ↓Var(s)) | s ;`→r⇐c,θ t, ` → r ⇐ c ∈ NRules(S, s)} represents the set
of one-step S-narrowings issued from s [7, Definition 79], where NRules(S, s) is the set of rules
α : ` → r ⇐ c ∈ S such that a nonvariable subterm t of s is a narrex of α, and θ↓Var(s) is
a substitution defined by θ↓Var(s) (x) = θ(x) if x ∈ Var(s) and θ↓Var(s) (x) = x otherwise.
As discussed in [7, Section 7.5], the set N1(S, s) can be infinite if NRules(S, s) is not a TRS,
i.e., it contains ‘proper’ conditional rules. In [7, Proposition 87] some sufficient conditions for
finiteness of N1(S, s) are given. Accordingly, we define a narrowing processor on fProblems.
Given a feasibility sequence G = (si →∗ ti)ni=1 we let

N (S,G, i) = {G[~θ, w →∗ ti]i | si →∗ ti ∈ G, (w, θ) ∈ N1(S, si)}

where ~θ consists of new conditions x1 →∗ θ(x1), . . . , xm →∗ θ(xm) obtained from the bindings
in θ for variables in Var(si) = {x1, . . . , xm}.

Definition 10 (Narrowing on Feasibility Conditions Processor). Let τ = (R,G) be an fProblem,
si →∗ ti ∈ G, and N ⊆ N (R,G, i) finite. PNC is given by PNC(τ) = {(R,N )}.

Theorem 11. PNC is sound. If N = N (R,G, i) and si →∗ ti ∈ G is such that si and ti do not
unify and either si is ground or (1) NRules(R, si) is a TRS and (2) si is linear, then PNC is
complete.

4 Experimental Evaluation

We participated in the Infeasibility (INF) category of the 2019 Confluence Competition (CoCo)3:

3http://project-coco.uibk.ac.at/2019/
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INF Tool Yes No Total

infChecker 40 32 72

nonreach 30 0 30

Moca 26 0 26

maedmax 15 0 15

CO3 12 0 12

Note that answers Yes/No in the table refer to infeasibility problems (which is the focus of the
competition). In our setting, given a CTRS R and an infeasibility problem given as a feasibility
sequence G, we just return Yes if τI is proved infeasible, and No if τI is proved feasible.

Apart from the 32 negative answers, there are 7 more examples that can be proved positively
using infChecker only. Furthermore, there are 10 examples that can be proved by other tools
and cannot be proved by infChecker.

5 Conclusions and Future Work

In this paper we present infChecker, a new tool for checking feasibility conditions of CTRSs that
takes advantage of the logic-based approach presented in [3, 4, 5]. We succesfully participated
in the 2019 Confluence Competition in the INF (infeasibility) category, being the most powerful
tool for checking both infeasibility and feasibility.

Currently, the tool has only three processors. As a subject for future work, we would like
to increase the power of the tool with new processors focused on feasibility conditions, analyze
the examples that cannot be proved by infChecker but can be proved by other tools and extend
the tool to deal with more involved rewrite systems (order-sorted, axioms. . . ).
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Abstract

Proof terms are a useful concept for comparing computations in term rewriting. The
residual operation is an important operation on proof terms, used to define projection
equivalence. We present a variant of the residual system (Definition 8.7.54 of TeReSe)
that is (innermost) confluent and terminating, and thus can be used to decide projection
equivalence.

1 Introduction

To reason about rewrite sequences in left-linear term rewrite systems, in [3, Chapter 8] and
[4] de Vrijer and van Oostrom define and compare different notions of equivalence. In this
paper we are concerned with one of these notions, projection equivalence, which is defined
using residuals. We present a schematic rewrite system for computing residuals that operates
on proof terms. The latter are used to represent rewrite sequences. Our rewrite system is a
variant of the residual system defined in [3, Definition 8.7.54 and proof of Theorem 8.7.57] and
[4, Definition 6.9 and proof of Theorem 6.12]. We identify several issues with the analysis in
[3, 4] and propose a solution by imposing an evaluation strategy on the residual system. We
establish (innermost) confluence and termination of the adapted system, and show how these
properties are used to decide projection equivalence. The decision procedure is incorporated
into ProTeM, a recent tool [1] for manipulating proof terms.

2 Proof Terms

Proof terms are built from function symbols, variables, and rule symbols as well as the binary
composition operator ; which is used in infix notation. Rule symbols represent rewrite rules
and have a fixed arity which is the number of different variables in the represented rule. We use
Greek letters (α, β, γ, . . . ) as rule symbols, and uppercase letters (A,B,C, . . . ) for proof terms.

If α is a rule symbol then lhsα (rhsα) denotes the left-hand (right-hand) side of the rewrite
rule represented by α. Furthermore varα denotes the list (x1, . . . , xn) of variables appearing in
α in some fixed order. The length of this list is the arity of α. Given a rule symbol α with
varα = (x1, . . . , xn) and proof terms A1, . . . , An, we write 〈A1, . . . , An〉α for the substitution
{xi 7→ Ai | 1 6 i 6 n}. A proof term A witnesses a rewrite sequence from its source src(A) to
its target tgt(A), which are computed as follows:

src(x) = tgt(x) = x src(f(A1, . . . , An)) = f(src(A1), . . . , src(An))

src(A ;B) = src(A) src(α(A1, . . . , An)) = lhsα〈src(A1), . . . , src(An)〉α
tgt(A ;B) = tgt(B) tgt(f(A1, . . . , An)) = f(tgt(A1), . . . , tgt(An))

tgt(α(A1, . . . , An)) = rhsα〈tgt(A1), . . . , tgt(An)〉α
∗This research is supported by FWF (Austrian Science Fund) project P27528. An extended version of this

paper will appear in the proceedings of CADE-27 [2].
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Here f is an n-ary function symbol. We assume tgt(A) = src(B) whenever the composition
A ;B is used in a proof term. Proof terms A and B are co-initial if they have the same source.

Example 1. Consider the TRS consisting of the rules α, β, γ and the proof terms A, B, C:

α : f(a, x)→ g(x, x) β : a→ b γ : b→ c

A = α(β ; γ) B = (α(a) ; g(β,β)) ; g(γ,γ) C = f(a,β ; γ) ; α(c)

We have src(A) = src(B) = src(C) = f(a, a) and tgt(A) = tgt(B) = tgt(C) = g(c, c). The proof
term B represents the sequence f(a, a)→ g(a, a) ‖−→ g(b, b) ‖−→ g(c, c).

We can represent any rewrite sequence −→∗ by a suitable proof term. A proof term without
composition represents a multi-step, a proof term without composition and nested rule symbols
represents a parallel step, and a proof term without composition and only one rule symbol
represents a single step. If a proof term contains neither compositions nor rule symbols, it
denotes an empty step.

3 Residuals

The residual operation computes, for co-initial proof terms A and B, which steps of A re-
main after performing B. The diagram on the left shows a desirable result of residuals
and the diagram on the right provides the intuition behind equations (6) and (7) below:

· ·

· ·

A

B

A/B

B/A

· · ·

· · ·

A B

C

A/C B/(C/A)

C/A (C/A)/B

In [3, Definition 8.7.54] and [4, Definition 6.9] the residual A / B is defined by means of the
following equations:

x / x = x (1)

f(A1, . . . , An) / f(B1, . . . , Bn) = f(A1 / B1, . . . , An / Bn) (2)

α(A1, . . . , An) / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α (3)

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α = α(A1 / B1, . . . , An / Bn) (4)

lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α (5)

C / (A ;B) = (C / A) / B (6)

(A ;B) / C = (A / C) ; (B / (C / A)) (7)

A / B = #(tgt(B))1 (otherwise)

Here A, B, C, A1, . . . , An, B1, . . . , Bn are proof term variables that can be instantiated with
arbitrary proof terms (so without /). The x in equation (1) denotes an arbitrary variable (in
the underlying TRS), which cannot be instantiated.2 For every rule α of the underlying TRS,
the equation schemes (3)–(5) are suitably instantiated. For instance, for rule α of Example 1

1In [3, 4] the wrong definition A / B = #(tgt(A)) is given.
2In [3, Remark 8.2.21] variables are treated as constants and (1) is absent.
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we obtain the equations α(A) / α(B) = g(A / B,A / B), α(A) / f(a, B) = α(A / B) and
f(a, A) / α(B) = g(A / B,A / B). In the final defining equation, # is the rule symbol of the
special error rule x → ⊥. This rule is adopted to ensure that A / B is defined for arbitrary
left-linear TRSs. The defining equations are taken modulo

t ; t ≈ t (8)

f(A1, . . . , An) ; f(B1, . . . , Bn) ≈ f(A1 ;B1, . . . , An ;Bn) (9)

The need for the so-called functorial identities (9) is explained in the following example (Vincent
van Oostrom, personal communication).

Example 2. Consider A = f(g(β) ; g(γ)) and B = α(a) in the TRS

α : f(g(x))→ x β : a→ b γ : b→ c

When computing A / B without (9), the α-instance f(g(A1)) /α(B1) = A1 / B1 of schema (4)
does not apply to A / B since the g in f(g(A1)) needs to be extracted from g(α) ; g(γ) when
computing A/B. As a consequence, the (otherwise) equation kicks in, producing the proof term
#(b) that indicates an error. With (9) in place, the result of evaluating A/B is the proof term
β ; γ, representing the desired sequence a→ b→ c.

It is not immediately clear that the defining equations on the preceding page constitute a
well-defined definition of the residual operation. In [3, proof of Theorem 8.7.57] and [4, proof of
Theorem 6.12] the defining equations together with (8) and (9) are oriented from left to right,
resulting in a rewrite system Res that is claimed to be terminating and confluent. The residual
of A over B is then defined as the unique normal form of A / B in Res.

There are two problems with this approach. First of all, when is the (otherwise) rule applied?
In [3] this is not specified, resulting in an imprecise rewrite semantics of Res. Keeping in mind
that A / B is supposed to be a total operation on proof terms (so no / in A and B), a natural
solution is to adopt an innermost evaluation strategy. This ensures that C / A is evaluated
before (C / A) / B in the right-hand side of (6) and before B / (C / A) in the right-hand side
of (7). The (otherwise) condition is taken into account by imposing the additional restriction
that the (otherwise) rule is applied to A / B (with A and B in normal form) only if the other
rules are not applicable. The second, and more serious, problem is that Res is not confluent.

Example 3. Consider the TRS consisting of the rules

α : f(x, y)→ f(y, x) β : a→ b γ : f(a, x)→ x

and the proof terms A = f(β, a), B = α(b,β), C = α(a, a), and D = γ(a). There are two ways
to compute (A ;B) / (C ;D), starting with (6) or (7):

((A ;B) / C) / D → ((A / C) ; (B / (C / A))) / D

→∗ (f(a / a,β / a) ; (B /α(a / β, a / a))) / D

→∗ (f(a,β) ; (B /α(b, a))) / D

→ (f(a,β) ; f(β / a, b / b)) / D

→∗ (f(a,β) ; f(β, b)) / D

→ f(a ; β,β ; b) / D → #(a)

(A / (C ;D)) ; (B / ((C ;D) / A))
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→∗ ((A / C) / D) ; (B / ((C / A) ; (D / (A / C))))

→∗ (f(a,β) / D) ; (B / (α(b, a) ; (D / f(a,β))))

→∗ β ; (B / (α(b, a) ; γ(b)))

→∗ β ; (f(β, b) / γ(b))

→∗ β ; #(b)

The normal forms #(a) and β ; #(b) represent different failing computations: a → ⊥ and
a→ b→ ⊥. The above computations are depicted in the diagrams below:

f(a, a) f(b, a) f(b, b)

f(a, a) f(b, b)

a ⊥

A B

C

D

(A ;B) /C

f(a ;β,β ; b)

((A ;B) /C) /D

#(a)

f(a, a) f(b, a) f(b, b)

f(a, a)

a b ⊥

A B

C

D

A/ (C ;D)

β

(C ;D) /Af(β, b)

B/((C;D)/A)

#(b)

To solve this problem we propose a drastic solution. When facing a term A / B with A
and B in normal form, the defining equations are evaluated from top to bottom and the first
equation that matches is applied. This essentially means that the ambiguity between (6) and
(7) is resolved by giving preference to the former. Due to innermost evaluation, no other critical
situations arise. So we arrive at the following definition, where we turned equation (8) into rule
(18), which is possible due to the presence of (19).

Definition 4. The residual TRS for proof terms consists of the following rules:

x / x → x (10)

f(A1, . . . , An) / f(B1, . . . , Bn) → f(A1 / B1, . . . , An / Bn) (11)

α(A1, . . . , An) / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (12)

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α → α(A1 / B1, . . . , An / Bn) (13)

lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (14)

C / (A ;B) → (C / A) / B (15)

(A ;B) / C → (A / C) ; (B / (C / A)) (16)

A / B → #(tgt(B)) (17)

x ; x → x (18)

f(A1, . . . , An) ; f(B1, . . . , Bn) → f(A1 ;B1, . . . , An ;Bn) (19)

We adopt innermost evaluation with the condition that the rules (10)–(17) are evaluated from
top to bottom.

The residual TRS operates on closed proof terms, which are proof terms without proof term
variables, to ensure that tgt(B) in the right-hand side of (17) can be evaluated. (Variables of
the underlying TRS are allowed in proof terms.)

Example 5. Consider the TRS of Example 1. For D = α(β) and E = α(a) ; g(β,β) we have

D / E = α(β) / (α(a) ; g(β,β))→ (α(β) /α(a)) / g(β,β)→ g(β / a,β / a) / g(β,β)
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→∗ g(β,β) / g(β,β)→ g(β / β,β / β)→∗ g(b, b)

E / D = (α(a) ; g(β,β)) /α(β)→ (α(a) /α(β)) ; (g(β,β) / (α(β) /α(a)))

→∗ g(a / β, a / β) ; (g(β,β) / g(β / a,β / a))→∗ g(b, b) ; (g(β,β) / g(β,β))

→ g(b, b) ; g(β / β,β / β)→∗ g(b, b) ; g(b, b)→ g(b ; b, b ; b)→∗ g(b, b)

Lemma 6. The residual TRS is terminating and confluent on closed proof terms.

Proof. Confluence of the residual TRS is obvious because of the innermost evaluation strategy
and the fact that there is no root overlap between its rules (due to the imposed evaluation order).
Showing termination is non-trivial because of the nested occurrences of / in the right-hand sides
of (15) and (16). As suggested in [3, Exercise 8.7.58] one can use semantic labeling [5]. We
take the well-founded algebra A with carrier N equipped with the standard order > and the
following weakly monotone interpretation and labeling functions:

αA(x1, . . . , xn) = fA(x1, . . . , xn) = max{x1, . . . , xn}
;A(x, y) = x+ y + 1 /A(x, y) = x #A(x) = ⊥A = 0

L; = Lf = Lα = L# = L⊥ = ∅ L/ = N lab/(x, y) = x+ y

The algebra A is a quasi-model of the residual TRS. Hence termination is a consequence of
termination of its labeled version. The latter follows from LPO with well-founded precedence
/i > /j for all i > j and /0 > ; > f > α > # > ⊥ for all function symbols f and rule symbols
α.

The residual TRS is used to define projection equivalence.

Definition 7. The projection order . and projection equivalence ' are defined on co-initial
proof terms as follows: A . B if A / B →∗ tgt(B) and A ' B if both A . B and B . A.

Example 8. The proof terms A, B, and C of Example 1 are projection equivalent since the
residuals A / B, B / A, A / C, and C / A all rewrite to the same normal form g(c, c).

Lemma 6 provides us with an easy decision procedure for projection equivalence: A ' B
if and only the (unique) normal forms of A / B and B / A with respect to the residual TRS
coincide and contain neither rule symbols nor compositions. This procedure is implemented in
ProTeM3 [1], a tool for manipulating proof terms. We refer to [2] for further details.
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1 Overview

infChecker 1.0 is a tool for checking (in)feasibility of sequences (si →∗ ti)
n
i=1 [3] over Conditional

Term Rewriting Systems (CTRSs) based on a Feasibility Framework similar to the Dependency
Pair Framework used in termination:

http://zenon.dsic.upv.es/infChecker/

infChecker is written in Haskell. Three processors have been implemented for the aforemen-
tioned feasibility framework:

• PSat integrates the satisfiability approach described in [3] to prove infeasibility. In
infChecker, we use the model generators AGES [1] and Mace4 [5] to find a proof.

• PProv integrates the logic-based approach to program analysis described in [2] to prove
feasibility by theorem proving. In infChecker, we use the theorem prover Prover9 [5].

• PNC adapt the processor that narrow conditions in the 2D DP framework [4] to be used
with feasibility sequences.

Since we have three processors, our proof strategy is very simple: (1) first, we try to prove
feasibility using PProv; (2) if PProv fails, we apply PSat; (3) if PSat fails, we apply PNC; (4) if PNC

succeeds and modifies the feasibility sequence, we go to (2), otherwise we return MAYBE.
We succesfully participated in the 2019 Confluence Competition in the INF (infeasibility)

category, being the most powerful tool for proving and disproving infeasibility.
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CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence of
conditional term rewriting systems (CTRSs, for short) by using a transformational approach
(cf. [4]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewriting system (TRS, for short) by using Uconf [2], a variant of the
unraveling U [6], and then verifies confluence of the transformed TRS by using the following
theorem: a 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [1, 2]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs. In the present version, a narrowing-tree-based approach [5,
3] to prove infeasiblity of a condition w.r.t. a specified CTRS has been implemented. The
approach is applicable to syntactically deterministic CTRSs that are operationally terminating
and ultra-right-linear w.r.t. the optimized unraveling.

To prove confluence by means of narrowing trees, the tool first computes the (conditional)
critical pairs, and then proves their joinability as follows: a critical pair 〈s, t〉 ⇐ c is joinable if
(1) c is the empty list and s = t, or (2) the narrowing tree for c can be simplified to a tree that
defines the empty set of substitutions. For example, let us consider 489.trs in Cops which is
an operationally terminating normal 1-CTRS, and has a conditional critical pair 〈true, false〉 ⇐
o(x) � true, e(x) � true. As a narrowing tree for condition o(x) � true, e(x) � true w.r.t.
489.trs, we construct the following production rules for a regular tree grammar [5]:

Γe(x)�true& o(x)�true→ Rec(Γe(x′)�true, {x 7→ x′}) &Rec(Γo(x′′)�true, {x 7→ x′′})
Γe(x′)�true→ id &{x′ 7→ 0} |

(
Rec(Γo(x′′)�true, {x1 7→ x′′}) & id

)
&{x′ 7→ s(x1)}

|
(
Rec(Γe(x′)�true, {x2 7→ x′}) &∅

)
&{x′ 7→ s(x2)}

Γo(x′′)�true→∅&{x′′ 7→ 0} |
(
Rec(Γe(x′)�true, {x3 7→ x′}) & id

)
&{x′′ 7→ s(x3)}

|
(
Rec(Γo(x′′)�true, {x4 7→ x′′}) &∅

)
&{x′′ 7→ s(x4)}

These rules can be simplified to Γe(x)�true& o(x)�true → ∅, and the critical pair is infeasible.
To prove infeasibility of a condition c, the tool first proves confluence, and then linearizes

c if failed to prove confluence. Then, the tool computes and simplifies a narrowing tree for c,
and examines the emptiness of the narrowing tree.
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A primary functionality of ACP is proving confluence of term rewriting systems (TRSs).
ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also incorporates
divide–and–conquer criteria by which confluence or non-confluence of TRSs can be inferred from
those of their components. Several methods for disproving confluence are also employed. For
some criteria, it supports generation of proofs in CPF format that can be certified by certifiers.
The internal structure of the prover is kept simple and is mostly inherited from the version
0.11a, which has been described in [2].

This year we have added a decision procedure of UNC for shallow TRSs. The decidability of
UNC for shallow TRSs has been shown in [4]; our new efficient procedure and a correctness proof
are reported in [5]. We have also added a functionality to deal with commutation problems.
Our (dis)proofs of commutation are based on a development closed criterion [6] and a simple
search for counter examples. Lastly, we have also added a confluence checking using ordered
rewriting [3].

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such as MiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt.
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AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground confluence of
many-sorted term rewriting systems. AGCP is written in Standard ML of New Jersey (SML/NJ).
AGCP proves ground confluence of many-sorted term rewriting systems based on two ingredients.
One ingredient is to divide the ground confluence problem of a many-sorted term rewriting
system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v w.r.t. S
for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all its ground

instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ
∗↔S vσ. Another ingredient is to prove ground

confluence of a many-sorted term rewriting system via the bounded ground convertibility of
the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order % if uθg

∗←→
% R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
%

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x % xi or y % xi for every xi.
Rewriting induction [3] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
% and a quasi-reducible many-sorted term rewriting system R such that R ⊆ �, the extension
proves bounded ground convertibility of the input equations w.r.t. %. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. Several methods that add wider flexibility to the this approach are given in
[2]: when suitable rules are not presented in the input system, additional rewrite rules are
constructed that supplement or replace existing rules in order to obtain a set of rules that
is adequate for applying rewriting induction; and an extension of the system of [2] is used if
if the input system contains non-orientable constructor rules. AGCP uses these extension of
the rewriting induction to prove not only inductive validity of equations but also the bounded
ground convertibility of the critical pairs. Finally, some methods to deal with disproving ground
confluence are added as reported in [2].

No new ground (non-)confluence criterion has been incorporated from the one submitted
for CoCo 2018.
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Noko-Leipzig at the 2019 Confluence Competition
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Noko-Leipzig is a confluence checker for string rewriting.
Noko-Leipzig implements a new method for proving non-joinability using arctically weighted

automata [4], a generalisation of other methods using automata [1, 3]. In parallel, it checks
local confluence and termination.

We found that even the basic method (no automata) is enough to answer 34 YES and
1401 NO for the 1541 string rewriting systems (SRS) from TPDB [2]. To get more interesting
examples, we generated and filtered some random SRS, and submitted them for the Confluence
Problems database. Among these are a few that can only be handled by the new method of
weighted automata.

Noko-Leipzig uses the same code base as the Matchbox termination prover [5]. With com-
petitor CSI [6], Noko-Leipzig shares the property that it rhymes with a TV series.
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CoCo 2019 Participant: CSI 1.2.3∗

Bertram Felgenhauer, Aart Middeldorp, and Fabian Mitterwallner
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CSI is a strong automatic tool for (dis)proving confluence of first-order term rewrite systems
(TRSs). It has been in development since 2010. Its name is derived from the Confluence of the
rivers Sill and Inn in Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [2]. Compared to last
year’s version, CSI 1.2.3 contains an implementation of the (inefficient) decision procedure for
UNC of shallow rewrite systems by Radcliffe, Moraes and Verma [3]. In addition, CSI 1.2.3
contains an implementation of right-reducibility (no right-hand side of a rewrite rule is a normal
form) [1] as a sufficient condition for NFP (and UNC and UNR by implication).

CSI participated in the categories CPF-TRS, NFP, SRS TRS, UNC, and UNR of CoCo 2019.
It won the NFP and UNR categories, and in connection with CeTA, the CPF-TRS category.
Somewhat surprisingly, CSI also won the new SRS category. CSI came in second behind ACP in
the TRS and UNC categories.
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FORT is a decision and synthesis tool for the first-order theory of rewriting for finite left-linear
right-ground rewrite systems. It implements the decision procedure for this theory, which uses
tree automata techniques and goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. The basic functionality of FORT is
described in [3] and in [4] we report on several extensions, including witness generation for
existentially quantified variables in formulas and support for combinations of rewrite systems.
The latter allows to express commutation, which is a new category (COM) in CoCo 2019 [2].

FORT 2.1 is implemented in Java. A command-line version of the tool can be downloaded
from

http://cl-informatik.uibk.ac.at/software/FORT/

FORT participated in the following CoCo 2019 categories: COM, GCR, NFP, UNC, and UNR.
Some of the YES/NO answers it produced in the NFP and UNR were out of reach for CSI.
Surprisingly, FORT won the COM category because of incorrect answers by the other participating
tools. We expect this does not happen again.
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Moca 0.1: A First-Order Theorem Prover for Horn Clauses

Yusuke Oi and Nao Hirokawa

JAIST, Japan

Moca is a fully automatic first-order theorem prover for Horn clauses. The tool, written in
Haskell, is freely available from:

http://www.jaist.ac.jp/project/maxcomp/

The usage is: moca.sh <file>. Given a satisfiability problem in the TPTP CNF format [3],
the tool outputs Satisfiable or Unsatisfiable if its satisfiability or unsatisfiability is proved,
respectively, and Maybe otherwise. Given an infeasibility problem in the CoCo format [2], the
tool outputs YES if its infeasibility is proved, and MAYBE otherwise.

Moca implements maximal ordered completion [4] and new approximation techniques. With
a small example we illustrate how Moca uses them to solve problems. Consider the infeasibility
problem of the conversion x− x↔∗ s(x) for the TRS:

x− 0→ x 0− x→ 0 s(x)− s(y)→ x− y

The problem can be regarded as the satisfiability problem of the Horn clauses:

x− 0 ≈ x 0− x ≈ 0 s(x)− s(y) ≈ x− y x− x 6≈ s(x)

By applying the split-if encoding [1] the problem reduces to the word problem of deciding
T 6≈E F for the equational system E :

x− 0 ≈ x 0− x ≈ 0 s(x)− s(y) ≈ x− y f(s(x), x) ≈ F f(x− x, x) ≈ T

In order to solve it our tool attempts to construct a ground-complete presentation of E by
using maximal ordered completion. However, the attempt is doomed to fail as the completion
diverges. Moca overcomes the divergence by approximating the last equation to the more
general equation f(x− x, y) ≈ T. This results in the following equational system:

x− 0 ≈ x 0− x ≈ 0 s(x)− s(y) ≈ x− y f(s(x), x) ≈ F f(x− x, y) ≈ T

Now maximal ordered completion builds up the finite ground-complete presentation R of the
approximated equational system:

x− 0→ x 0− x→ 0 s(x)− s(y)→ x− y

f(0, y)→ T f(s(x), x)→ F f(x− x, y)→ T

Since T↓R 6= F↓R holds, infeasibility of the conversion x − x ↔∗ s(x) is concluded. Details of
Moca and its underlying methods will be presented in our forthcoming paper.
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CoLL-Saigawa 1.3: A Joint Confluence Tool∗

Kiraku Shintani and Nao Hirokawa
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CoLL-Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term
rewrite systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: collsaigawa <file>. Here the input file is written in the TRS for-
mat [11]. The tool outputs YES if confluence of the input TRS is proved, NO if non-confluence
is shown, and MAYBE if the tool does not reach any conclusion.

CoLL-Saigawa is a joint confluence tool of CoLL v1.3 [7] and Saigawa v1.9 [3]. If an input
TRS is left-linear, CoLL proves confluence. Otherwise, Saigawa analyzes confluence. CoLL is
a commutation tool specialized for left-linear TRSs. It proves confluence as self-commutation
by using Hindley’s commutation theorem [2] together with the three commutation criteria:
Development closeness [1, 8], rule labeling with weight function [9], and Church-Rosser modulo
A/C [5]. Saigawa can deal with non-left-linear TRSs. The tool employs the four confluence
criteria: The criteria based on critical pair systems [4, Theorem 3] and on extended critical
pairs [6, Theorem 2], rule labeling [9], and Church-Rosser modulo AC [5].

In this version (version 1.3) we attempted to rectify a bug in AC unification (see [10]), but
it turned out that the bug still remains in the current implementation. We will correct it soon.
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CoLL (version 1.3) is a tool for automatically proving commutation of left-linear term rewrite
systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/coll/

The typical usage is: coll <file>. Here the input file is written in the commutation problem
format [10]. The tool outputs YES if commutation of the input TRSs is proved, NO if non-
commutation is shown, and MAYBE if the tool does not reach any conclusion.

In this tool commutation of left-linear TRSs is shown by Hindley’s Commutation Theorem:

Theorem 1 ([3]). ARSs A = 〈A, {→α}α∈I〉 and B = 〈A, {→β}β∈J〉 commute if →α and →β

commute for all α ∈ I and β ∈ J .

Here indexes are interpreted as subsystems of the input TRSs. For every pair of subsystems the
tool proves the commutation property, employing the three criteria: Development closeness [2,
7], rule labeling with weight function [8, 1], and Church-Rosser modulo A/C [4]. A detailed
description of CoLL can be found in [6].

In this version (version 1.3) we attempted to rectify a bug in AC unification (see [9]), but
it turned out that the bug still remains in the current implementation. We will correct it soon.

References

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In Proc.
21st RTA, volume 6 of LIPIcs, pages 7–16, 2010.

[2] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.
In Proc. 20th RTA, volume 5595 of LNCS, pages 93–102, 2009.

[3] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[4] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[5] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[6] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNAI, pages 127–136, 2015.

[7] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.

[8] V. van Oostrom. Confluence by decreasing diagrams converted. In A. Voronkov, editor, Proc. 19th
RTA, volume 5117 of LNCS, pages 306–320, 2008.

[9] J. Nagele, B. Felgenhauer, and A. Middeldorp. CSI: New evidence – a progress report. Proc. 26th
CADE, volume 10395 of LNAI, pages 385–397, 2017.

[10] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. Proc. 25th TACAS,
volume 11429 of LNCS, pages 25–40, 2019.

58



CoCo 2019 Participant: CSÎ ho 0.3.2
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CSÎ ho is a tool for automatically (dis)proving confluence of higher-order rewrite systems,
specifically pattern rewrite systems (PRSs) as introduced by Nipkow [3,7]. CSÎ ho focuses on
patterns in order to ensure decidability of unification for computing critical pairs. To this
end CSÎ ho implements a version of Nipkow’s algorithm for higher-order pattern unification [8].
CSÎ ho is an extension of CSI, a confluence prover for first-order rewrite systems. The tool is
available at

http://cl-informatik.uibk.ac.at/software/csi/ho

Below we briefly list the criteria implemented by CSÎ ho—a more detailed description of both
CSÎ ho and CSI can be found in [5, 6].

For terminating PRSs CSÎ ho decides confluence by checking joinability of critical pairs [7].
As termination criteria CSÎ ho implements a basic higher-order recursive path ordering and static
dependency pairs with dependency graph decomposition and the subterm criterion. Alternatively,
one can also use an external termination tool like WANDA [2] as an oracle. For potentially
non-terminating systems CSÎ ho supports weak orthogonality [10] and van Oostrom’s result on
development closed critical pairs [9]. As a divide-and-conquer technique CSÎ ho implements
modularity for left-linear PRSs—note that confluence of PRSs is not modular in general [1].
Moreover CSÎ ho uses the simple technique of adding and removing redundant rules [4], adapted
for PRSs.

No new features were added to CSÎ ho since CoCo 2018. It ran unopposed in the HRS
category of CoCo 2019.
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Christian Sternagel and Sarah Winkler

Department of Computer Science, University of Innsbruck, Austria

ConCon is a fully automatic confluence checker for oriented first-order conditional term
rewrite systems (CTRSs). It is written in Scala and available under the LGPL license at

http://cl-informatik.uibk.ac.at/software/concon

For more details on its implementation and employed methods we refer to an earlier system
description [2].

Apart from some refactoring to cater for the new INF category (for infeasibility) of CoCo the
most significant new feature in ConCon 1.9 is its use of the external ordered completion tool
MædMax [4] for proving infeasibility. This new technique comes with certificate generation and
can be certified [1] by CeTA [3] since version 2.36.

CoCo 2019. Unfortunately, the above mentioned refactoring did have its price: In the
Confluence Competition 2019 ConCon 1.9 had YES/NO conflicts (on Cops #869, #870, #854,
#874, #858, #875, and #909) with the tool infChecker in the new INF category. Moreover, we
noticed that despite there being no conflicts, there were answers in the CTRS category that
we could not reproduce with the bugfix version 1.9.1 of ConCon. Therefore, ConCon dropped
out of both of the above categories. (The problem was a flipped Boolean flag in the exact tree
automata completion method that was inadvertently introduced during refactoring.)

On the one hand, this clearly shows the need for certification. On the other hand, it may be
interesting to note, that in the certified CPF-CTRS category (were ConCon+CeTA was the only
participant this year) ConCon could prove (non)confluence of 1.3 times as many CTRSs than
the winner of the non certified CTRS category.
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The tool CeTA [4] is a certifier for, among other properties, (non-)confluence of term rewrite
systems with and without conditions. Its soundness is proven as part of the formal proof library
IsaFoR, the Isabelle Formalization of Rewriting.

In the following, we describe what is new in version 2.36 of CeTA. For further details we refer
to the certification problem format (CPF) and the IsaFoR/CeTA website:

http://cl-informatik.uibk.ac.at/ceta/

Conditional term rewriting. Since version 2.36, CeTA supports the certification of ordered
completion proofs for infeasibility of conditional rules and critical pairs [2].

CoCo 2019. In the 2019 edition of the Confluence Competition, CeTA was used by three tools
in two categories to certify their generated proofs: by ACP [1] and CSI [5] in the CPF-TRS
category, and by ConCon [3] in the CPF-CTRS category.
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The tool nonreach is an automated, efficient tool to check infeasibility with respect to ori-
ented conditional term rewrite systems (CTRSs). The Haskell source code can be obtained
from a public git repository hosted on bitbucket :

https://bitbucket.org/fmessner/nonreach

Given a CTRS (or a TRS) and one or more infeasibility problems, nonreach uses a combi-
nation of the following two approaches:

• Decomposition is used to split a problem into conjunctions of easier and disjunctions of
more specific subproblems. This creates a tree structure.

• Fast checks are then used to prove leaves of the tree infeasible and simplify the structure.

These methods are applied alternately until either infeasibility was proven (by simplifying the
tree to False) or a user-defined threshold of iterations has been reached (and nonreach concludes
MAYBE).

Our decomposition methods are based on narrowing (with some heuristics) and proving root-
nonreachability [2]. The fast checks are based on etcap [3] and the inductive symbol transition
graph [2].

In the 2019 edition of the Confluence Competition nonreach took part in the infeasibility
(INF) category and earned the second place. Additionally, nonreach was the second fastest
tool. The fastest tool CO3,1 however, only solved 12 problems, where nonreach solved 30.
Furthermore, nonreach only required 0.35% of the time taken by the winner of the competition,
infChecker.2

For more details concerning the implementation and usage of nonreach, we refer to the tool
demonstration paper published in TACAS 2019 [1].
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MædMax is a completion tool: given a set of first-order equations E as input, it performs
standard, ordered, or normalized completion in the attempt to derive a (ground) complete
presentation of E . It can also act as an equational theorem prover: if in addition to E a goal
equation s ≈ t is provided as input, it will check whether there is a substitution σ such that
sσ ↔∗E tσ holds.

In contrast to traditional completion tools, MædMax implements maximal completion. It
is thus fully automatic in that no reduction order is required as input; instead, a suitable
orientation of equations is detected by solving a maxSMT optimization problem. Details on this
approach can be found in the initial proposal of maximal completion by Klein and Hirokawa [1]
and a recent system description of MædMax [3].

MædMax is written in OCaml and available under the BSD license at

http://cl-informatik.uibk.ac.at/software/maedmax

CoCo 2019. In version 1.7 released for CoCo 2019 an infeasibility mode was added to
participate in the new INF category. In this mode MædMax uses only one single technique to
establish infeasibility, employing the above mentioned theorem proving capabilities. We briefly
outline the idea.

Suppose R is the unconditional TRS of a given CTRS C, and the condition c is given as
a sequence of pairs of terms s1 ≈ t1, . . . , sk ≈ tk. Then c is infeasible whenever there is no
substitution σ such that siσ →∗C tiσ holds for all 1 6 i 6 k (in case of an oriented CTRS). Now,
it is obviously a sound overapproximation to ensure that there is no σ such that siσ ↔∗R tiσ for
all 1 ≤ i ≤ k. Thus MædMax uses a fresh function symbol c and attempts to decide the goal
c(s1, . . . , sk) ≈ c(t1, . . . , tk) with respect to R considered as a set of input equalities. This task
can be achieved using the aforementioned equational theorem proving techniques. Moreover,
MædMax can output an XML certificate for such an infeasibility proof which is checkable by
the proof checker CeTA. Further details can be found in [2].

Since this criterion for infeasibility constitutes an overapproximation, MædMax can only
return YES answers in its infeasibility mode. The results of CoCo 2019 show that the supported
technique is not very powerful compared to other tools. However, an upside of the approach is
that it can also be used for CTRSs with other condition types than oriented.
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